Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +55 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from nltk.tokenize import sent_tokenize
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import nltk
|
7 |
+
nltk.download('punkt')
|
8 |
+
|
9 |
+
def generate_summary(teacher_feedback):
|
10 |
+
# Tokenize the feedback into sentences
|
11 |
+
sentences = sent_tokenize(teacher_feedback)
|
12 |
+
|
13 |
+
if len(sentences) == 0:
|
14 |
+
st.text("No feedback available.")
|
15 |
+
|
16 |
+
# Encode sentences into BERT embeddings
|
17 |
+
sentence_embeddings = model.encode(sentences)
|
18 |
+
|
19 |
+
# Calculate the mean embedding of all sentences
|
20 |
+
mean_embedding = sentence_embeddings.mean(axis=0, keepdims=True)
|
21 |
+
|
22 |
+
# Calculate cosine similarity between each sentence embedding and the mean embedding
|
23 |
+
cos_similarities = cosine_similarity(sentence_embeddings, mean_embedding)
|
24 |
+
|
25 |
+
# Sort sentences by cosine similarity in descending order
|
26 |
+
sorted_indices = cos_similarities.flatten().argsort()[::-1]
|
27 |
+
|
28 |
+
# Select the top two sentences as representative
|
29 |
+
num_sentences = min(1,2) # Adjust the number of sentences as needed
|
30 |
+
representative_sentences = [sentences[idx] for idx in sorted_indices[:num_sentences]]
|
31 |
+
|
32 |
+
# Generate summary
|
33 |
+
summary = ' '.join(representative_sentences)
|
34 |
+
return summary
|
35 |
+
|
36 |
+
st.header('RAMACHANDRA COLLEGE OF ENGINEERING')
|
37 |
+
st.title('STUDENT FEEDBACK ANALYZER')
|
38 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
39 |
+
|
40 |
+
csv=st.file_uploader('Enter CSV')
|
41 |
+
if csv:
|
42 |
+
df = pd.read_csv(csv)
|
43 |
+
# Load the dataset
|
44 |
+
# Specify the range of teachers to consider
|
45 |
+
start_teacher = 1
|
46 |
+
end_teacher = 5 # Adjust as needed
|
47 |
+
# Generate summary for each teacher in the specified range
|
48 |
+
for i in range(start_teacher, end_teacher + 1):
|
49 |
+
if 'Teacher '+str(i) in df.columns and not df['Teacher '+str(i)].isnull().all():
|
50 |
+
teacher_feedback = df['Teacher '+str(i)].dropna().str.cat(sep=' ')
|
51 |
+
st.text("Summary of feedback for :"+'Teacher '+str(i))
|
52 |
+
st.text(generate_summary(teacher_feedback))
|
53 |
+
|
54 |
+
else:
|
55 |
+
st.text("No feedback available for Teacher"+str(i))
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
numpy
|
4 |
+
seaborn
|
5 |
+
matplotlib
|
6 |
+
nltk
|
7 |
+
sentence_transformers
|
8 |
+
scikit-learn
|