rcefaces / app.py
KIRANKALLA's picture
Create app.py
2a5a0ea verified
raw
history blame
1.71 kB
import streamlit as st
import face_recognition
import cv2
import numpy as np
import pickle
from PIL import Image
import pandas as pd
pickle1 = open('rce_face_encodings.pkl','rb')
rce_face_encodings = pickle.load(pickle1)
pickle2 = open('rce_face_names.pkl','rb')
rce_face_names = pickle.load(pickle2)
pickle1.close()
pickle2.close()
face_locations = []
face_names=[]
st.header('RCEE :: FACE RECOGNTION')
st.title('AI&DS')
image = st.file_uploader('Pick any Image')
if image:
st.image(image)
image = Image.open(image)
image = np.array(image)
face_locations = face_recognition.face_locations(image)
face_encodings = face_recognition.face_encodings(image,face_locations)
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(rce_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(rce_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = rce_face_names[best_match_index]
face_names.append(name)
for (top, right, bottom, left), name in zip(face_locations, face_names):
cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
cv2.imshow('Face Recognition', image)
df = pd.DataFrame({'Student_Name':face_names})
st.dataframe(df)
cv2.waitKey(0)
cv2.destroyAllWindows()