import gradio as gr from transformers import pipeline # Load the pipeline for text2text-generation using the Blenderbot model chatbot = pipeline(task="text2text-generation", model="facebook/blenderbot-400M-distill") # Define the text generation function def generate_text(prompt, max_length=50): response = pipe(prompt, max_length=max_length, truncation=True) return response[0]['generated_text'] # Create the Gradio app interface with gr.Blocks() as app: gr.Markdown("## Text-to-Text Generation App") gr.Markdown( "Enter a prompt below and the model will generate text. " "This app uses the `facebook/blenderbot-400M-distill` model." ) with gr.Row(): input_prompt = gr.Textbox(label="Input Prompt", placeholder="Type your prompt here...") output_text = gr.Textbox(label="Generated Text") max_length = gr.Slider(label="Max Length", minimum=10, maximum=200, step=10, value=50) submit_button = gr.Button("Generate") submit_button.click( fn=generate_text, inputs=[input_prompt, max_length], outputs=output_text ) # Launch the app if __name__ == "__main__": app.launch()