KShivendu commited on
Commit
d0e302c
·
1 Parent(s): 687c53e

fix: Import module errors

Browse files
Files changed (3) hide show
  1. app.py +3 -3
  2. main.py +3 -3
  3. utils.py +1 -1
app.py CHANGED
@@ -7,15 +7,15 @@ from qdrant_client import QdrantClient
7
  from fastembed import TextEmbedding
8
 
9
  from llama_index.llms.openai import OpenAI
10
- from food_recommender.utils import extract_food_items, synthesize_food_item
11
- from food_recommender.main import RecommendationEngine
12
 
13
  ocr = PaddleOCR(use_angle_cls=True, lang="en", use_gpu=False)
14
  llm = OpenAI(model="gpt-3.5-turbo")
15
  rec_engine = RecommendationEngine("food", QdrantClient(":memory"), TextEmbedding())
16
 
17
 
18
- def run_ocr(img_path):
19
  result = ocr.ocr(img_path, cls=True)[0]
20
  return "\n".join([line[1][0] for line in result])
21
 
 
7
  from fastembed import TextEmbedding
8
 
9
  from llama_index.llms.openai import OpenAI
10
+ from .utils import extract_food_items, synthesize_food_item
11
+ from .main import RecommendationEngine
12
 
13
  ocr = PaddleOCR(use_angle_cls=True, lang="en", use_gpu=False)
14
  llm = OpenAI(model="gpt-3.5-turbo")
15
  rec_engine = RecommendationEngine("food", QdrantClient(":memory"), TextEmbedding())
16
 
17
 
18
+ def run_ocr(img_path) -> str:
19
  result = ocr.ocr(img_path, cls=True)[0]
20
  return "\n".join([line[1][0] for line in result])
21
 
main.py CHANGED
@@ -4,8 +4,8 @@ from qdrant_client import QdrantClient, models as qmodels
4
  from llama_index.llms.openai import OpenAI
5
  from fastembed import TextEmbedding
6
 
7
- from food_recommender.models import FoodItem
8
- from food_recommender.utils import synthesize_food_item
9
 
10
  likes = ["dosa", "fanta", "croissant", "waffles"]
11
  dislikes = ["virgin mojito"]
@@ -65,7 +65,7 @@ class RecommendationEngine:
65
 
66
  def recommend_from_given(
67
  self, items: List[FoodItem], limit: int = 3
68
- ) -> Dict[str, int]:
69
  liked_points, _offset = self.qdrant.scroll(
70
  self.collection,
71
  scroll_filter={"must": [{"key": "liked", "match": {"value": True}}]},
 
4
  from llama_index.llms.openai import OpenAI
5
  from fastembed import TextEmbedding
6
 
7
+ from .models import FoodItem
8
+ from .utils import synthesize_food_item
9
 
10
  likes = ["dosa", "fanta", "croissant", "waffles"]
11
  dislikes = ["virgin mojito"]
 
65
 
66
  def recommend_from_given(
67
  self, items: List[FoodItem], limit: int = 3
68
+ ) -> Dict[str, float]:
69
  liked_points, _offset = self.qdrant.scroll(
70
  self.collection,
71
  scroll_filter={"must": [{"key": "liked", "match": {"value": True}}]},
utils.py CHANGED
@@ -2,7 +2,7 @@ from typing import List
2
  from llama_index.program.openai import OpenAIPydanticProgram
3
  from llama_index.core.llms.llm import LLM
4
 
5
- from food_recommender.models import FoodItem, ExtractedFoodName
6
 
7
 
8
  def synthesize_food_item(food_name: str, llm: LLM) -> FoodItem:
 
2
  from llama_index.program.openai import OpenAIPydanticProgram
3
  from llama_index.core.llms.llm import LLM
4
 
5
+ from .models import FoodItem, ExtractedFoodName
6
 
7
 
8
  def synthesize_food_item(food_name: str, llm: LLM) -> FoodItem: