KWKGloBot / app.py
maryampet's picture
Update app.py
d98e15a verified
import gradio as gr
# Define the theme with custom colors and styles, including larger text sizes
theme = gr.themes.Default(
primary_hue=gr.themes.Color(
c100="#ffedd5", c200="#fed7aa", c300="#ffe09e", c400="#c2814c",
c50="#fff8f0", c500="#f97316", c600="#ea580c", c700="#c2410c",
c800="#9a3412", c900="#7c2d12", c950="#611f00"
),
secondary_hue="red",
neutral_hue="slate",
font=[gr.themes.GoogleFont('jack armstrong'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('xkcd'), 'ui-monospace', 'Consolas', 'monospace'],
).set(
body_text_color='*primary_950',
body_text_color_dark='*secondary_50',
body_text_size='26px', # Increase body text size
body_text_color_subdued='*primary_400',
body_text_weight='500',
background_fill_primary='*primary_300',
background_fill_primary_dark='*primary_800',
background_fill_secondary='*primary_50',
background_fill_secondary_dark='*primary_600',
border_color_accent='*secondary_950',
border_color_accent_dark='*body_text_color',
border_color_accent_subdued='*border_color_accent',
link_text_color='*secondary_800',
code_background_fill='*neutral_200',
code_background_fill_dark='*neutral_100',
block_shadow='none',
block_shadow_dark='none',
form_gap_width='0px',
checkbox_label_background_fill='*button_secondary_background_fill',
checkbox_label_background_fill_dark='*button_secondary_background_fill',
checkbox_label_background_fill_hover='*button_secondary_background_fill_hover',
checkbox_label_background_fill_hover_dark='*button_secondary_background_fill_hover',
checkbox_label_shadow='none',
error_background_fill_dark='*background_fill_primary',
input_background_fill='*neutral_100',
input_background_fill_dark='*neutral_700',
input_border_width='0px',
input_border_width_dark='0px',
input_shadow='none',
input_shadow_dark='none',
input_shadow_focus='*input_shadow',
input_shadow_focus_dark='*input_shadow',
stat_background_fill='*primary_300',
stat_background_fill_dark='*primary_500',
button_shadow='none',
button_shadow_active='none',
button_shadow_hover='none',
button_transition='background-color 0.2s ease',
button_primary_background_fill='*primary_200',
button_primary_background_fill_dark='*primary_700',
button_primary_background_fill_hover='*button_primary_background_fill',
button_primary_background_fill_hover_dark='*button_primary_background_fill',
button_primary_border_color_dark='*primary_600',
button_secondary_background_fill='*neutral_200',
button_secondary_background_fill_dark='*neutral_600',
button_secondary_background_fill_hover='*button_secondary_background_fill',
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
button_cancel_background_fill='*button_secondary_background_fill',
button_cancel_background_fill_dark='*button_secondary_background_fill',
button_cancel_background_fill_hover='*button_cancel_background_fill',
button_cancel_background_fill_hover_dark='*button_cancel_background_fill',
button_cancel_border_color='*button_secondary_border_color',
button_cancel_border_color_dark='*button_secondary_border_color',
button_cancel_text_color='*button_secondary_text_color',
button_cancel_text_color_dark='*button_secondary_text_color'
)
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
filename = "output_chess_details.txt"
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
try:
lower_query = user_query.lower()
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
best_idx = similarities.argmax()
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
try:
system_message = "You are a chatbot specialized in providing information on local events, pro-Palestine movements, and community outreach, pride movements/events and community resources."
user_message = f"Here's the information on St. Louis local events, outreach programs, community resources and local activism and movements: {relevant_segment}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
if question == "":
return "Welcome to GloBot! Ask me anything about the St. Louis Community!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
welcome_message = """
## Your AI-driven assistant for STL community outreach queries. Created by Honna, Davonne, and Maryam of the 2024 Kode With Klossy St.Louis Camp!
"""
topics = """
### Feel free to ask me anything from the topics below!
- Pro-Palestine Events
- Pride Events
- Social Justice Workshops
- Cultural Festivals
- Community Outreach Programs
- Environmental Activism
- Health & Wellness Events
- How to Support Local Businesses
"""
def display_image():
return "Globot_Logo3.jpg"
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image(display_image(), width=2000, height=600)
gr.Markdown(welcome_message)
with gr.Row():
with gr.Column():
gr.Markdown(topics)
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="GloBot Response", placeholder="GloBot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)