Spaces:
Sleeping
Sleeping
import gradio as gr | |
# Define the theme with custom colors and styles, including larger text sizes | |
theme = gr.themes.Default( | |
primary_hue=gr.themes.Color( | |
c100="#ffedd5", c200="#fed7aa", c300="#ffe09e", c400="#c2814c", | |
c50="#fff8f0", c500="#f97316", c600="#ea580c", c700="#c2410c", | |
c800="#9a3412", c900="#7c2d12", c950="#611f00" | |
), | |
secondary_hue="red", | |
neutral_hue="slate", | |
font=[gr.themes.GoogleFont('jack armstrong'), 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
font_mono=[gr.themes.GoogleFont('xkcd'), 'ui-monospace', 'Consolas', 'monospace'], | |
).set( | |
body_text_color='*primary_950', | |
body_text_color_dark='*secondary_50', | |
body_text_size='26px', # Increase body text size | |
body_text_color_subdued='*primary_400', | |
body_text_weight='500', | |
background_fill_primary='*primary_300', | |
background_fill_primary_dark='*primary_800', | |
background_fill_secondary='*primary_50', | |
background_fill_secondary_dark='*primary_600', | |
border_color_accent='*secondary_950', | |
border_color_accent_dark='*body_text_color', | |
border_color_accent_subdued='*border_color_accent', | |
link_text_color='*secondary_800', | |
code_background_fill='*neutral_200', | |
code_background_fill_dark='*neutral_100', | |
block_shadow='none', | |
block_shadow_dark='none', | |
form_gap_width='0px', | |
checkbox_label_background_fill='*button_secondary_background_fill', | |
checkbox_label_background_fill_dark='*button_secondary_background_fill', | |
checkbox_label_background_fill_hover='*button_secondary_background_fill_hover', | |
checkbox_label_background_fill_hover_dark='*button_secondary_background_fill_hover', | |
checkbox_label_shadow='none', | |
error_background_fill_dark='*background_fill_primary', | |
input_background_fill='*neutral_100', | |
input_background_fill_dark='*neutral_700', | |
input_border_width='0px', | |
input_border_width_dark='0px', | |
input_shadow='none', | |
input_shadow_dark='none', | |
input_shadow_focus='*input_shadow', | |
input_shadow_focus_dark='*input_shadow', | |
stat_background_fill='*primary_300', | |
stat_background_fill_dark='*primary_500', | |
button_shadow='none', | |
button_shadow_active='none', | |
button_shadow_hover='none', | |
button_transition='background-color 0.2s ease', | |
button_primary_background_fill='*primary_200', | |
button_primary_background_fill_dark='*primary_700', | |
button_primary_background_fill_hover='*button_primary_background_fill', | |
button_primary_background_fill_hover_dark='*button_primary_background_fill', | |
button_primary_border_color_dark='*primary_600', | |
button_secondary_background_fill='*neutral_200', | |
button_secondary_background_fill_dark='*neutral_600', | |
button_secondary_background_fill_hover='*button_secondary_background_fill', | |
button_secondary_background_fill_hover_dark='*button_secondary_background_fill', | |
button_cancel_background_fill='*button_secondary_background_fill', | |
button_cancel_background_fill_dark='*button_secondary_background_fill', | |
button_cancel_background_fill_hover='*button_cancel_background_fill', | |
button_cancel_background_fill_hover_dark='*button_cancel_background_fill', | |
button_cancel_border_color='*button_secondary_border_color', | |
button_cancel_border_color_dark='*button_secondary_border_color', | |
button_cancel_text_color='*button_secondary_text_color', | |
button_cancel_text_color_dark='*button_secondary_text_color' | |
) | |
from sentence_transformers import SentenceTransformer, util | |
import openai | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
filename = "output_chess_details.txt" | |
retrieval_model_name = 'output/sentence-transformer-finetuned/' | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
try: | |
retrieval_model = SentenceTransformer(retrieval_model_name) | |
print("Models loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load models: {e}") | |
def load_and_preprocess_text(filename): | |
try: | |
with open(filename, 'r', encoding='utf-8') as file: | |
segments = [line.strip() for line in file if line.strip()] | |
print("Text loaded and preprocessed successfully.") | |
return segments | |
except Exception as e: | |
print(f"Failed to load or preprocess text: {e}") | |
return [] | |
segments = load_and_preprocess_text(filename) | |
def find_relevant_segment(user_query, segments): | |
try: | |
lower_query = user_query.lower() | |
query_embedding = retrieval_model.encode(lower_query) | |
segment_embeddings = retrieval_model.encode(segments) | |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] | |
best_idx = similarities.argmax() | |
return segments[best_idx] | |
except Exception as e: | |
print(f"Error in finding relevant segment: {e}") | |
return "" | |
def generate_response(user_query, relevant_segment): | |
try: | |
system_message = "You are a chatbot specialized in providing information on local events, pro-Palestine movements, and community outreach, pride movements/events and community resources." | |
user_message = f"Here's the information on St. Louis local events, outreach programs, community resources and local activism and movements: {relevant_segment}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages, | |
max_tokens=500, | |
temperature=0.2, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
return response['choices'][0]['message']['content'].strip() | |
except Exception as e: | |
print(f"Error in generating response: {e}") | |
return f"Error in generating response: {e}" | |
def query_model(question): | |
if question == "": | |
return "Welcome to GloBot! Ask me anything about the St. Louis Community!" | |
relevant_segment = find_relevant_segment(question, segments) | |
if not relevant_segment: | |
return "Could not find specific information. Please refine your question." | |
response = generate_response(question, relevant_segment) | |
return response | |
welcome_message = """ | |
## Your AI-driven assistant for STL community outreach queries. Created by Honna, Davonne, and Maryam of the 2024 Kode With Klossy St.Louis Camp! | |
""" | |
topics = """ | |
### Feel free to ask me anything from the topics below! | |
- Pro-Palestine Events | |
- Pride Events | |
- Social Justice Workshops | |
- Cultural Festivals | |
- Community Outreach Programs | |
- Environmental Activism | |
- Health & Wellness Events | |
- How to Support Local Businesses | |
""" | |
def display_image(): | |
return "Globot_Logo3.jpg" | |
# Setup the Gradio Blocks interface with custom layout components | |
with gr.Blocks(theme=theme) as demo: | |
gr.Image(display_image(), width=2000, height=600) | |
gr.Markdown(welcome_message) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(topics) | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?") | |
answer = gr.Textbox(label="GloBot Response", placeholder="GloBot will respond here...", interactive=False, lines=10) | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=query_model, inputs=question, outputs=answer) | |
# Launch the Gradio app to allow user interaction | |
demo.launch(share=True) | |