Spaces:
Sleeping
Sleeping
#app.py | |
import os | |
import io | |
import uvicorn | |
import torch | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.responses import JSONResponse | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from torchvision import models, transforms | |
from PIL import Image | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import pydicom | |
import gc | |
from model import CombinedModel, ImageToTextProjector | |
from fastapi import FastAPI, Request | |
app = FastAPI() | |
async def root(request: Request): | |
return {"message": "Welcome to Phronesis"} | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def dicom_to_png(dicom_data): | |
try: | |
dicom_file = pydicom.dcmread(dicom_data) | |
if not hasattr(dicom_file, 'PixelData'): | |
raise HTTPException(status_code=400, detail="No pixel data in DICOM file.") | |
pixel_array = dicom_file.pixel_array.astype(np.float32) | |
pixel_array = ((pixel_array - pixel_array.min()) / (pixel_array.ptp())) * 255.0 | |
pixel_array = pixel_array.astype(np.uint8) | |
img = Image.fromarray(pixel_array).convert("L") | |
return img | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error converting DICOM to PNG: {e}") | |
# Set up secure model initialization | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
if not HF_TOKEN: | |
raise ValueError("Missing Hugging Face token in environment variables.") | |
try: | |
report_generator_tokenizer = AutoTokenizer.from_pretrained( | |
"KYAGABA/combined-multimodal-model", | |
token=HF_TOKEN | |
) | |
video_model = models.video.r3d_18(weights="KINETICS400_V1") | |
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512) | |
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base") | |
projector = ImageToTextProjector(512, report_generator.config.d_model) | |
num_classes = 4 | |
combined_model = CombinedModel(video_model, report_generator, num_classes, projector, report_generator_tokenizer) | |
model_file = hf_hub_download("KYAGABA/combined-multimodal-model", "pytorch_model.bin", token=HF_TOKEN) | |
state_dict = torch.load(model_file, map_location=device) | |
combined_model.load_state_dict(state_dict) | |
combined_model.eval() | |
except Exception as e: | |
raise SystemExit(f"Error loading models: {e}") | |
image_transform = transforms.Compose([ | |
transforms.Resize((112, 112)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]) | |
]) | |
class_names = ["acute", "normal", "chronic", "lacunar"] | |
async def predict(files: list[UploadFile]): | |
n_frames = 16 | |
images = [] | |
for file in files: | |
ext = file.filename.split('.')[-1].lower() | |
try: | |
if ext in ['dcm', 'ima']: | |
dicom_img = dicom_to_png(await file.read()) | |
images.append(dicom_img.convert("RGB")) | |
elif ext in ['png', 'jpeg', 'jpg']: | |
img = Image.open(io.BytesIO(await file.read())).convert("RGB") | |
images.append(img) | |
else: | |
raise HTTPException(status_code=400, detail="Unsupported file type.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error processing file {file.filename}: {e}") | |
if not images: | |
return JSONResponse(content={"error": "No valid images provided."}, status_code=400) | |
if len(images) >= n_frames: | |
images_sampled = [images[i] for i in np.linspace(0, len(images) - 1, n_frames, dtype=int)] | |
else: | |
images_sampled = images + [images[-1]] * (n_frames - len(images)) | |
image_tensors = [image_transform(img) for img in images_sampled] | |
images_tensor = torch.stack(image_tensors).permute(1, 0, 2, 3).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
class_outputs, generated_report, _ = combined_model(images_tensor) | |
predicted_class = torch.argmax(class_outputs, dim=1).item() | |
predicted_class_name = class_names[predicted_class] | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return { | |
"predicted_class": predicted_class_name, | |
"generated_report": generated_report[0] if generated_report else "No report generated." | |
} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 7860))) |