Update
Browse files
app.py
CHANGED
@@ -15,6 +15,15 @@ except ImportError as e:
|
|
15 |
audioseal_available = False
|
16 |
print(f"AudioSeal could not be imported: {e}")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def extract_mfcc_features(waveform, sample_rate, n_mfcc=40, n_mels=128, win_length=400, hop_length=160):
|
19 |
mfcc_transform = T.MFCC(
|
20 |
sample_rate=sample_rate,
|
@@ -44,6 +53,11 @@ def plot_spectrogram(waveform, sample_rate):
|
|
44 |
buf.seek(0)
|
45 |
return Image.open(buf)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
47 |
def detect_watermark(waveform, sample_rate):
|
48 |
"""Detect watermark in the uploaded audio using AudioSeal."""
|
49 |
if audioseal_available:
|
@@ -87,4 +101,3 @@ interface = gr.Interface(
|
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
interface.launch()
|
90 |
-
|
|
|
15 |
audioseal_available = False
|
16 |
print(f"AudioSeal could not be imported: {e}")
|
17 |
|
18 |
+
def load_and_resample_audio(audio_file_path, target_sample_rate=16000):
|
19 |
+
waveform, sample_rate = torchaudio.load(audio_file_path)
|
20 |
+
# Check if the audio needs to be resampled
|
21 |
+
if sample_rate != target_sample_rate:
|
22 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
|
23 |
+
waveform = resampler(waveform)
|
24 |
+
return waveform, target_sample_rate
|
25 |
+
|
26 |
+
|
27 |
def extract_mfcc_features(waveform, sample_rate, n_mfcc=40, n_mels=128, win_length=400, hop_length=160):
|
28 |
mfcc_transform = T.MFCC(
|
29 |
sample_rate=sample_rate,
|
|
|
53 |
buf.seek(0)
|
54 |
return Image.open(buf)
|
55 |
|
56 |
+
audio_file_path = "path_to_your_audio_file.wav"
|
57 |
+
waveform, resampled_sr = load_and_resample_audio(audio_file_path)
|
58 |
+
|
59 |
+
detect_watermark(waveform, resampled_sr)
|
60 |
+
|
61 |
def detect_watermark(waveform, sample_rate):
|
62 |
"""Detect watermark in the uploaded audio using AudioSeal."""
|
63 |
if audioseal_available:
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
interface.launch()
|
|