Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification | |
import torch | |
import librosa | |
import numpy as np | |
local_model_path = "./" | |
extractor = AutoFeatureExtractor.from_pretrained(local_model_path) | |
model = AutoModelForAudioClassification.from_pretrained(local_model_path) | |
def preprocess_audio(audio_file_path, target_sample_rate=16000): | |
# Load the audio file, ensuring mono conversion | |
waveform, _ = librosa.load(audio_file_path, sr=target_sample_rate, mono=True) | |
# Normalizing waveform to be between -1 and 1 | |
waveform = librosa.util.normalize(waveform) | |
return waveform, target_sample_rate | |
def predict_voice(audio_file_path): | |
try: | |
waveform, sample_rate = preprocess_audio(audio_file_path) | |
# Ensure waveform is a float32 array | |
waveform = waveform.astype(np.float32) | |
inputs = extractor(waveform, return_tensors="pt", sampling_rate=sample_rate) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_index = logits.argmax() | |
label = model.config.id2label[predicted_index.item()] | |
confidence = torch.softmax(logits, dim=1).max().item() * 100 | |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%." | |
except Exception as e: | |
# Improved error handling for debugging | |
result = f"Error during processing: {e}" | |
return result | |
iface = gr.Interface( | |
fn=predict_voice, | |
inputs=gr.Audio(label="Upload Audio File", type="filepath"), | |
outputs=gr.Textbox(label="Prediction"), | |
title="Voice Authenticity Detection", | |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results." | |
) | |
iface.launch() | |