Kabatubare's picture
Update app.py
b860c29 verified
raw
history blame
3.69 kB
import gradio as gr
import librosa
import numpy as np
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForAudioClassification, ASTFeatureExtractor
import random
# Model and feature extractor loading
model = AutoModelForAudioClassification.from_pretrained("./")
feature_extractor = ASTFeatureExtractor.from_pretrained("./")
def plot_waveform(waveform, sr):
plt.figure(figsize=(12, 3)) # Larger figure size
plt.title('Waveform')
plt.ylabel('Amplitude')
plt.plot(np.linspace(0, len(waveform) / sr, len(waveform)), waveform)
plt.xlabel('Time (s)')
return plt.gcf()
def plot_spectrogram(waveform, sr):
S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=128)
S_DB = librosa.power_to_db(S, ref=np.max)
plt.figure(figsize=(12, 4)) # Larger figure size
librosa.display.specshow(S_DB, sr=sr, x_axis='time', y_axis='mel')
plt.title('Mel Spectrogram')
plt.colorbar(format='%+2.0f dB')
plt.tight_layout()
return plt.gcf()
def custom_feature_extraction(audio, sr=16000, target_length=1024):
features = feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding="max_length", max_length=target_length)
return features.input_values
def apply_time_shift(waveform, max_shift_fraction=0.1):
shift = random.randint(-int(max_shift_fraction * len(waveform)), int(max_shift_fraction * len(waveform)))
return np.roll(waveform, shift)
def predict_voice(audio_file_path):
try:
waveform, sample_rate = librosa.load(audio_file_path, sr=feature_extractor.sampling_rate, mono=True)
augmented_waveform = apply_time_shift(waveform)
original_features = custom_feature_extraction(waveform, sr=sample_rate)
augmented_features = custom_feature_extraction(augmented_waveform, sr=sample_rate)
with torch.no_grad():
outputs_original = model(original_features)
outputs_augmented = model(augmented_features)
logits = (outputs_original.logits + outputs_augmented.logits) / 2
predicted_index = logits.argmax()
label = model.config.id2label[predicted_index.item()]
confidence = torch.softmax(logits, dim=1).max().item() * 100
prediction_text = (f"The model predicts the voice as '{label}'. "
f"Confidence level: {confidence:.2f}%")
waveform_plot = plot_waveform(waveform, sample_rate)
spectrogram_plot = plot_spectrogram(waveform, sample_rate)
return prediction_text, waveform_plot, spectrogram_plot
except Exception as e:
return f"Error during processing: {e}", None, None
# Define the Gradio app layout
iface = gr.Interface(
fn=predict_voice,
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
outputs=[
gr.Textbox(label="Analysis", type="auto"),
gr.Plot(label="Waveform"),
gr.Plot(label="Spectrogram")
],
layout="vertical",
title="Voice Clone Detection",
description="This tool determines whether a voice is real or an AI-generated clone. Audio files judged to be authentic and produced by humans are classified as 'Bonafide'. In contrast, those perceived to be synthetically generated are labeled as 'Spoof'. Upload an audio file for analysis."
)
# Customize the CSS to adjust the layout and component sizes
css = """
.gradio-container {
max-width: 960px; /* Adjust the maximum width as needed */
}
.input-container {
width: 25%; /* Smaller input area */
}
.output-container {
width: 74%; /* Larger output area */
}
"""
iface.launch(css=css)