Spaces:
Runtime error
Runtime error
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
from transformers import AutoModelForAudioClassification, ASTFeatureExtractor | |
import random | |
import tempfile | |
# Model and feature extractor loading | |
model = AutoModelForAudioClassification.from_pretrained("./") | |
feature_extractor = ASTFeatureExtractor.from_pretrained("./") | |
def plot_waveform(waveform, sr): | |
plt.figure(figsize=(12, 4)) | |
plt.title('Waveform') | |
plt.ylabel('Amplitude') | |
plt.plot(np.linspace(0, len(waveform) / sr, len(waveform)), waveform) | |
plt.xlabel('Time (s)') | |
# Save plot to a temporary file | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png', dir='./') | |
plt.savefig(temp_file.name) | |
plt.close() # Close the figure to free memory | |
return temp_file.name | |
def plot_spectrogram(waveform, sr): | |
S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=128) | |
S_DB = librosa.power_to_db(S, ref=np.max) | |
plt.figure(figsize=(12, 6)) | |
librosa.display.specshow(S_DB, sr=sr, x_axis='time', y_axis='mel') | |
plt.title('Mel Spectrogram') | |
plt.colorbar(format='%+2.0f dB') | |
plt.tight_layout() | |
# Save plot to a temporary file | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png', dir='./') | |
plt.savefig(temp_file.name) | |
plt.close() # Close the figure to free memory | |
return temp_file.name | |
def custom_feature_extraction(audio, sr=16000, target_length=1024): | |
features = feature_extractor(audio, sampling_rate=sr, return_tensors="pt", padding="max_length", max_length=target_length) | |
return features.input_values | |
def apply_time_shift(waveform, max_shift_fraction=0.1): | |
shift = random.randint(-int(max_shift_fraction * len(waveform)), int(max_shift_fraction * len(waveform))) | |
return np.roll(waveform, shift) | |
def predict_voice(audio_file_path): | |
try: | |
waveform, sample_rate = librosa.load(audio_file_path, sr=feature_extractor.sampling_rate, mono=True) | |
augmented_waveform = apply_time_shift(waveform) | |
original_features = custom_feature_extraction(waveform, sr=sample_rate) | |
augmented_features = custom_feature_extraction(augmented_waveform, sr=sample_rate) | |
with torch.no_grad(): | |
outputs_original = model(original_features) | |
outputs_augmented = model(augmented_features) | |
logits = (outputs_original.logits + outputs_augmented.logits) / 2 | |
predicted_index = logits.argmax() | |
original_label = model.config.id2label[predicted_index.item()] | |
confidence = torch.softmax(logits, dim=1).max().item() * 100 | |
# Map original labels to new labels | |
label_mapping = { | |
"Spoof": "AI-generated Clone", | |
"Bonafide": "Real Human Voice" | |
} | |
# Use the original label to get the new label | |
new_label = label_mapping.get(original_label, "Unknown") # Default to "Unknown" if label not found | |
waveform_plot = plot_waveform(waveform, sample_rate) | |
spectrogram_plot = plot_spectrogram(waveform, sample_rate) | |
return ( | |
f"The voice is classified as '{new_label}' with a confidence of {confidence:.2f}%.", | |
waveform_plot, | |
spectrogram_plot | |
) | |
except Exception as e: | |
return f"Error during processing: {e}", None, None | |
iface = gr.Interface( | |
fn=predict_voice, | |
inputs=gr.Audio(label="Upload Audio File", type="filepath"), | |
outputs=[ | |
gr.Textbox(label="Prediction"), | |
gr.Image(label="Waveform"), # Adjusted to remove unsupported 'tool' argument | |
gr.Image(label="Spectrogram") # Adjusted to remove unsupported 'tool' argument | |
], | |
title="Voice Clone Detection", | |
description="Detects whether a voice is real or an AI-generated clone. Upload an audio file to see the results." | |
) | |
iface.launch() |