Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
import logging
|
6 |
from transformers import AutoModelForAudioClassification
|
7 |
|
@@ -12,19 +13,21 @@ logging.basicConfig(level=logging.INFO)
|
|
12 |
local_model_path = "./"
|
13 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
14 |
|
15 |
-
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512):
|
16 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
17 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
18 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
19 |
S_DB_tensor = torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
def predict_voice(audio_file_path):
|
23 |
try:
|
24 |
features = custom_feature_extraction(audio_file_path)
|
25 |
|
26 |
with torch.no_grad():
|
27 |
-
# Directly pass the features tensor to the model
|
28 |
outputs = model(features)
|
29 |
|
30 |
logits = outputs.logits
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
import logging
|
7 |
from transformers import AutoModelForAudioClassification
|
8 |
|
|
|
13 |
local_model_path = "./"
|
14 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
15 |
|
16 |
+
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
|
17 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
18 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
19 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
20 |
S_DB_tensor = torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
|
21 |
+
|
22 |
+
# Resizing the tensor to match the model's expected input size
|
23 |
+
S_DB_tensor_resized = F.interpolate(S_DB_tensor, size=(n_mels, target_length), mode='nearest')
|
24 |
+
return S_DB_tensor_resized
|
25 |
|
26 |
def predict_voice(audio_file_path):
|
27 |
try:
|
28 |
features = custom_feature_extraction(audio_file_path)
|
29 |
|
30 |
with torch.no_grad():
|
|
|
31 |
outputs = model(features)
|
32 |
|
33 |
logits = outputs.logits
|