Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,77 @@
|
|
1 |
-
import gradio as gr
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import logging
|
6 |
-
from transformers import Wav2Vec2ForSequenceClassification,
|
|
|
7 |
|
8 |
-
# Initialize logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
-
#
|
12 |
-
model_path = "./"
|
13 |
try:
|
14 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_path)
|
15 |
-
|
16 |
-
logging.info("Model and
|
17 |
except Exception as e:
|
18 |
-
logging.error(f"
|
19 |
raise e
|
20 |
|
21 |
-
def
|
22 |
"""
|
23 |
-
Load
|
24 |
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
def
|
34 |
"""
|
35 |
-
|
36 |
"""
|
37 |
-
|
38 |
-
|
39 |
-
logging.info("Audio file preprocessed.")
|
40 |
-
return input_values
|
41 |
-
except Exception as e:
|
42 |
-
logging.error(f"Audio preprocessing failed: {e}")
|
43 |
-
raise e
|
44 |
|
45 |
-
def
|
46 |
"""
|
47 |
-
|
48 |
"""
|
49 |
try:
|
|
|
|
|
|
|
|
|
50 |
with torch.no_grad():
|
51 |
logits = model(input_values).logits
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# This should be adapted based on your specific model's labels
|
65 |
-
labels = ["label1", "label2"] # Dummy label list for demonstration
|
66 |
-
try:
|
67 |
-
label = labels[prediction_id]
|
68 |
-
logging.info(f"Label obtained: {label}")
|
69 |
-
return label
|
70 |
-
except Exception as e:
|
71 |
-
logging.error(f"Failed to get label: {e}")
|
72 |
-
raise e
|
73 |
-
|
74 |
-
def main(audio_file_path):
|
75 |
-
"""
|
76 |
-
Load audio, preprocess, predict, and return the label.
|
77 |
-
"""
|
78 |
-
try:
|
79 |
-
audio = load_audio(audio_file_path)
|
80 |
-
input_values = preprocess_audio(audio)
|
81 |
-
prediction_id = predict(input_values)
|
82 |
-
label = get_label(prediction_id)
|
83 |
-
return label
|
84 |
except Exception as e:
|
85 |
-
logging.error(f"Error
|
86 |
-
return
|
87 |
|
88 |
-
#
|
89 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Launch the interface
|
92 |
-
|
|
|
|
|
|
1 |
import librosa
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import logging
|
5 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
6 |
+
import gradio as gr
|
7 |
|
|
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
+
# Path to your Wav2Vec2 model and processor
|
11 |
+
model_path = "./wav2vec2-sequence-classification"
|
12 |
try:
|
13 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_path)
|
14 |
+
processor = Wav2Vec2Processor.from_pretrained(model_path)
|
15 |
+
logging.info("Model and processor loaded successfully.")
|
16 |
except Exception as e:
|
17 |
+
logging.error(f"Loading model and processor failed: {e}")
|
18 |
raise e
|
19 |
|
20 |
+
def preprocess_audio(file_path):
|
21 |
"""
|
22 |
+
Load and preprocess the audio file.
|
23 |
"""
|
24 |
+
# Load the audio file using librosa
|
25 |
+
audio, sr = librosa.load(file_path, sr=None)
|
26 |
+
# Resample the audio to 16 kHz (if not already at this sample rate)
|
27 |
+
if sr != 16000:
|
28 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
|
29 |
+
sr = 16000
|
30 |
+
return audio, sr
|
31 |
|
32 |
+
def audio_to_features(audio, sr):
|
33 |
"""
|
34 |
+
Convert audio waveform to model features.
|
35 |
"""
|
36 |
+
# Use the processor to prepare the features for the model
|
37 |
+
return processor(audio, sampling_rate=sr, return_tensors="pt", padding=True, truncation=True).input_values
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
def classify_audio(file_path):
|
40 |
"""
|
41 |
+
Classify the content of the audio file.
|
42 |
"""
|
43 |
try:
|
44 |
+
audio, sr = preprocess_audio(file_path)
|
45 |
+
input_values = audio_to_features(audio, sr)
|
46 |
+
|
47 |
+
# Inference
|
48 |
with torch.no_grad():
|
49 |
logits = model(input_values).logits
|
50 |
+
|
51 |
+
# Post-processing: Convert logits to softmax to get probabilities
|
52 |
+
probabilities = torch.softmax(logits, dim=1).detach().numpy()
|
53 |
+
|
54 |
+
# Assuming you have a binary classification model for simplicity
|
55 |
+
# Modify this part based on your actual number of classes and labels
|
56 |
+
labels = ['Class 0', 'Class 1'] # Example labels
|
57 |
+
predictions = dict(zip(labels, probabilities[0]))
|
58 |
+
|
59 |
+
# Format the prediction output
|
60 |
+
prediction_output = "\n".join([f"{label}: {prob:.4f}" for label, prob in predictions.items()])
|
61 |
+
return prediction_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
+
logging.error(f"Error during classification: {e}")
|
64 |
+
return f"Classification error: {e}"
|
65 |
|
66 |
+
# Gradio interface
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=classify_audio,
|
69 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
70 |
+
outputs="text",
|
71 |
+
title="Audio Classification with Wav2Vec2",
|
72 |
+
description="Upload an audio file to classify its content using a Wav2Vec2 model."
|
73 |
+
)
|
74 |
|
75 |
# Launch the interface
|
76 |
+
if __name__ == "__main__":
|
77 |
+
iface.launch()
|