Kabatubare commited on
Commit
50facbf
·
verified ·
1 Parent(s): e1791c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -44
app.py CHANGED
@@ -2,65 +2,38 @@ import gradio as gr
2
  import librosa
3
  import numpy as np
4
  import torch
5
- import torch.nn.functional as F
6
  import logging
7
  from transformers import AutoModelForAudioClassification
8
- import random
9
 
10
- # Configure logging
11
  logging.basicConfig(level=logging.INFO)
12
 
13
- # Load the model
14
  model_path = "./"
15
  model = AutoModelForAudioClassification.from_pretrained(model_path)
16
 
17
- def custom_feature_extraction(waveform, sr, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
18
- # Generate Mel spectrogram
 
 
 
 
19
  S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
20
  S_DB = librosa.power_to_db(S, ref=np.max)
21
-
22
- # Pitch feature (using piptrack to estimate pitches and then averaging)
23
- pitches, _ = librosa.piptrack(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
24
- pitch_mean = np.mean(pitches, axis=0, keepdims=True)
25
-
26
- # Spectral centroid
27
- spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
28
-
29
- # Concatenate features and normalize
30
- features = np.concatenate([S_DB, pitch_mean, spectral_centroids], axis=0)
31
- features_tensor = torch.tensor(features).float()
32
-
33
- # Adjust the tensor's length
34
- if features_tensor.shape[1] > target_length:
35
- features_tensor = features_tensor[:, :target_length]
36
- elif features_tensor.shape[1] < target_length:
37
- padding = target_length - features_tensor.shape[1]
38
- features_tensor = F.pad(features_tensor, (0, padding), 'constant', 0)
39
-
40
- return features_tensor.unsqueeze(0)
41
 
42
- def apply_time_shift(waveform, max_shift_fraction=0.1):
43
- shift_amount = int(max_shift_fraction * len(waveform))
44
- shift = random.randint(-shift_amount, shift_amount)
45
- return np.roll(waveform, shift)
46
-
47
- def predict_voice(audio_file):
48
  try:
49
- waveform, sample_rate = librosa.load(audio_file, sr=None)
50
- augmented_waveform = apply_time_shift(waveform)
51
-
52
- original_features = custom_feature_extraction(waveform, sample_rate)
53
- augmented_features = custom_feature_extraction(augmented_waveform, sample_rate)
54
-
55
  with torch.no_grad():
56
- outputs_original = model(original_features)
57
- outputs_augmented = model(augmented_features)
58
- logits = (outputs_original.logits + outputs_augmented.logits) / 2
59
  predicted_index = logits.argmax()
60
  label = model.config.id2label[predicted_index.item()]
61
  confidence = torch.softmax(logits, dim=1).max().item() * 100
62
-
63
  result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
 
64
  except Exception as e:
65
  result = f"Error during processing: {e}"
66
  logging.error(result)
@@ -69,8 +42,8 @@ def predict_voice(audio_file):
69
 
70
  iface = gr.Interface(
71
  fn=predict_voice,
72
- inputs=gr.Audio(label="Upload Audio File", type="filepath"),
73
- outputs=gr.Textbox(label="Prediction"),
74
  title="Voice Authenticity Detection",
75
  description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
76
  )
 
2
  import librosa
3
  import numpy as np
4
  import torch
 
5
  import logging
6
  from transformers import AutoModelForAudioClassification
 
7
 
 
8
  logging.basicConfig(level=logging.INFO)
9
 
 
10
  model_path = "./"
11
  model = AutoModelForAudioClassification.from_pretrained(model_path)
12
 
13
+ def preprocess_audio(audio_file_path, sr=16000):
14
+ waveform, _ = librosa.load(audio_file_path, sr=sr)
15
+ waveform = librosa.effects.trim(waveform)[0] # Trim silence
16
+ return waveform
17
+
18
+ def extract_features(waveform, sr=16000, n_mels=128, n_fft=2048, hop_length=512):
19
  S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
20
  S_DB = librosa.power_to_db(S, ref=np.max)
21
+ return torch.tensor(S_DB).float().unsqueeze(0) # Add batch dimension
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ def predict_voice(audio_file_path):
 
 
 
 
 
24
  try:
25
+ waveform = preprocess_audio(audio_file_path)
26
+ features = extract_features(waveform)
27
+
 
 
 
28
  with torch.no_grad():
29
+ outputs = model(features)
30
+ logits = outputs.logits
 
31
  predicted_index = logits.argmax()
32
  label = model.config.id2label[predicted_index.item()]
33
  confidence = torch.softmax(logits, dim=1).max().item() * 100
34
+
35
  result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
36
+ logging.info("Prediction successful.")
37
  except Exception as e:
38
  result = f"Error during processing: {e}"
39
  logging.error(result)
 
42
 
43
  iface = gr.Interface(
44
  fn=predict_voice,
45
+ inputs=gr.Audio(label="Upload Audio File", type="file"),
46
+ outputs=gr.Text(label="Prediction"),
47
  title="Voice Authenticity Detection",
48
  description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
49
  )