Kabatubare commited on
Commit
53b1abc
·
verified ·
1 Parent(s): 637d0ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -45
app.py CHANGED
@@ -5,76 +5,69 @@ import torch
5
  import torch.nn.functional as F
6
  import logging
7
  from transformers import AutoModelForAudioClassification
 
8
 
9
- # Configure logging for debugging and information
10
  logging.basicConfig(level=logging.INFO)
11
 
12
- # Model loading from the specified local path
13
- local_model_path = "./"
14
- model = AutoModelForAudioClassification.from_pretrained(local_model_path)
15
 
16
- def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
17
- """
18
- Custom feature extraction using Mel spectrogram, tailored for models trained on datasets like AudioSet.
19
- Args:
20
- audio_file_path: Path to the audio file for prediction.
21
- sr: Target sampling rate for the audio file.
22
- n_mels: Number of Mel bands to generate.
23
- n_fft: Length of the FFT window.
24
- hop_length: Number of samples between successive frames.
25
- target_length: Expected length of the Mel spectrogram in the time dimension.
26
- Returns:
27
- A tensor representation of the Mel spectrogram features.
28
- """
29
- waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
30
- S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
31
  S_DB = librosa.power_to_db(S, ref=np.max)
32
- mel_tensor = torch.tensor(S_DB).float()
 
 
 
 
 
 
33
 
34
- # Ensure the tensor matches the expected sequence length
35
- current_length = mel_tensor.shape[1]
36
  if current_length > target_length:
37
- mel_tensor = mel_tensor[:, :target_length] # Truncate if longer
38
  elif current_length < target_length:
39
  padding = target_length - current_length
40
- mel_tensor = F.pad(mel_tensor, (0, padding), "constant", 0) # Pad if shorter
 
 
41
 
42
- mel_tensor = mel_tensor.unsqueeze(0) # Add batch dimension for compatibility with model
43
- return mel_tensor
 
 
44
 
45
  def predict_voice(audio_file_path):
46
- """
47
- Predicts the audio class using a pre-trained model and custom feature extraction.
48
- Args:
49
- audio_file_path: Path to the audio file for prediction.
50
- Returns:
51
- A string containing the predicted class and confidence level.
52
- """
53
  try:
54
- features = custom_feature_extraction(audio_file_path)
55
- with torch.no_grad():
56
- outputs = model(features)
57
- logits = outputs.logits
58
- predicted_index = logits.argmax()
59
- label = model.config.id2label[predicted_index.item()]
60
- confidence = torch.softmax(logits, dim=1).max().item() * 100
61
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
63
  logging.info("Prediction successful.")
64
  except Exception as e:
65
  result = f"Error during processing: {e}"
66
  logging.error(result)
67
-
68
  return result
69
 
70
- # Setting up the Gradio interface
71
  iface = gr.Interface(
72
  fn=predict_voice,
73
- inputs=gr.Audio(label="Upload Audio File", type="filepath"),
74
- outputs=gr.Textbox(label="Prediction"),
75
  title="Voice Authenticity Detection",
76
  description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
77
  )
78
 
79
- # Launching the interface
80
  iface.launch()
 
5
  import torch.nn.functional as F
6
  import logging
7
  from transformers import AutoModelForAudioClassification
8
+ import random
9
 
 
10
  logging.basicConfig(level=logging.INFO)
11
 
12
+ model_path = "./"
13
+ model = AutoModelForAudioClassification.from_pretrained(model_path)
 
14
 
15
+ def custom_feature_extraction(waveform, sr, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
16
+ S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  S_DB = librosa.power_to_db(S, ref=np.max)
18
+
19
+ pitches, _ = librosa.piptrack(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
20
+ pitches = pitches.mean(axis=0, keepdims=True)
21
+ spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
22
+
23
+ features = np.concatenate([S_DB, pitches, spectral_centroids], axis=0)
24
+ features_tensor = torch.tensor(features).float()
25
 
26
+ current_length = features_tensor.shape[1]
 
27
  if current_length > target_length:
28
+ features_tensor = features_tensor[:, :target_length]
29
  elif current_length < target_length:
30
  padding = target_length - current_length
31
+ features_tensor = F.pad(features_tensor, (0, padding), "constant", 0)
32
+
33
+ return features_tensor.unsqueeze(0)
34
 
35
+ def apply_time_shift(waveform, max_shift_fraction=0.1):
36
+ shift = int(max_shift_fraction * waveform.size)
37
+ shift = random.randint(-shift, shift)
38
+ return np.roll(waveform, shift)
39
 
40
  def predict_voice(audio_file_path):
 
 
 
 
 
 
 
41
  try:
42
+ waveform, sample_rate = librosa.load(audio_file_path, sr=None)
43
+ augmented_waveform = apply_time_shift(waveform)
 
 
 
 
 
44
 
45
+ original_features = custom_feature_extraction(waveform, sample_rate)
46
+ augmented_features = custom_feature_extraction(augmented_waveform, sample_rate)
47
+
48
+ with torch.no_grad():
49
+ outputs_original = model(original_features)
50
+ outputs_augmented = model(augmented_features)
51
+
52
+ logits = (outputs_original.logits + outputs_augmented.logits) / 2
53
+ predicted_index = logits.argmax()
54
+ label = model.config.id2label[predicted_index.item()]
55
+ confidence = torch.softmax(logits, dim=1).max().item() * 100
56
+
57
  result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
58
  logging.info("Prediction successful.")
59
  except Exception as e:
60
  result = f"Error during processing: {e}"
61
  logging.error(result)
62
+
63
  return result
64
 
 
65
  iface = gr.Interface(
66
  fn=predict_voice,
67
+ inputs=gr.inputs.Audio(label="Upload Audio File", type="filepath"),
68
+ outputs=gr.outputs.Textbox(label="Prediction"),
69
  title="Voice Authenticity Detection",
70
  description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
71
  )
72
 
 
73
  iface.launch()