Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,76 +5,69 @@ import torch
|
|
5 |
import torch.nn.functional as F
|
6 |
import logging
|
7 |
from transformers import AutoModelForAudioClassification
|
|
|
8 |
|
9 |
-
# Configure logging for debugging and information
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
15 |
|
16 |
-
def custom_feature_extraction(
|
17 |
-
|
18 |
-
Custom feature extraction using Mel spectrogram, tailored for models trained on datasets like AudioSet.
|
19 |
-
Args:
|
20 |
-
audio_file_path: Path to the audio file for prediction.
|
21 |
-
sr: Target sampling rate for the audio file.
|
22 |
-
n_mels: Number of Mel bands to generate.
|
23 |
-
n_fft: Length of the FFT window.
|
24 |
-
hop_length: Number of samples between successive frames.
|
25 |
-
target_length: Expected length of the Mel spectrogram in the time dimension.
|
26 |
-
Returns:
|
27 |
-
A tensor representation of the Mel spectrogram features.
|
28 |
-
"""
|
29 |
-
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
30 |
-
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
31 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
current_length = mel_tensor.shape[1]
|
36 |
if current_length > target_length:
|
37 |
-
|
38 |
elif current_length < target_length:
|
39 |
padding = target_length - current_length
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
def predict_voice(audio_file_path):
|
46 |
-
"""
|
47 |
-
Predicts the audio class using a pre-trained model and custom feature extraction.
|
48 |
-
Args:
|
49 |
-
audio_file_path: Path to the audio file for prediction.
|
50 |
-
Returns:
|
51 |
-
A string containing the predicted class and confidence level.
|
52 |
-
"""
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
outputs = model(features)
|
57 |
-
logits = outputs.logits
|
58 |
-
predicted_index = logits.argmax()
|
59 |
-
label = model.config.id2label[predicted_index.item()]
|
60 |
-
confidence = torch.softmax(logits, dim=1).max().item() * 100
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
63 |
logging.info("Prediction successful.")
|
64 |
except Exception as e:
|
65 |
result = f"Error during processing: {e}"
|
66 |
logging.error(result)
|
67 |
-
|
68 |
return result
|
69 |
|
70 |
-
# Setting up the Gradio interface
|
71 |
iface = gr.Interface(
|
72 |
fn=predict_voice,
|
73 |
-
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
74 |
-
outputs=gr.Textbox(label="Prediction"),
|
75 |
title="Voice Authenticity Detection",
|
76 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
|
77 |
)
|
78 |
|
79 |
-
# Launching the interface
|
80 |
iface.launch()
|
|
|
5 |
import torch.nn.functional as F
|
6 |
import logging
|
7 |
from transformers import AutoModelForAudioClassification
|
8 |
+
import random
|
9 |
|
|
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
+
model_path = "./"
|
13 |
+
model = AutoModelForAudioClassification.from_pretrained(model_path)
|
|
|
14 |
|
15 |
+
def custom_feature_extraction(waveform, sr, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
|
16 |
+
S = librosa.feature.melspectrogram(y=waveform, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
18 |
+
|
19 |
+
pitches, _ = librosa.piptrack(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
|
20 |
+
pitches = pitches.mean(axis=0, keepdims=True)
|
21 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sr, n_fft=n_fft, hop_length=hop_length)
|
22 |
+
|
23 |
+
features = np.concatenate([S_DB, pitches, spectral_centroids], axis=0)
|
24 |
+
features_tensor = torch.tensor(features).float()
|
25 |
|
26 |
+
current_length = features_tensor.shape[1]
|
|
|
27 |
if current_length > target_length:
|
28 |
+
features_tensor = features_tensor[:, :target_length]
|
29 |
elif current_length < target_length:
|
30 |
padding = target_length - current_length
|
31 |
+
features_tensor = F.pad(features_tensor, (0, padding), "constant", 0)
|
32 |
+
|
33 |
+
return features_tensor.unsqueeze(0)
|
34 |
|
35 |
+
def apply_time_shift(waveform, max_shift_fraction=0.1):
|
36 |
+
shift = int(max_shift_fraction * waveform.size)
|
37 |
+
shift = random.randint(-shift, shift)
|
38 |
+
return np.roll(waveform, shift)
|
39 |
|
40 |
def predict_voice(audio_file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
+
waveform, sample_rate = librosa.load(audio_file_path, sr=None)
|
43 |
+
augmented_waveform = apply_time_shift(waveform)
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
original_features = custom_feature_extraction(waveform, sample_rate)
|
46 |
+
augmented_features = custom_feature_extraction(augmented_waveform, sample_rate)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs_original = model(original_features)
|
50 |
+
outputs_augmented = model(augmented_features)
|
51 |
+
|
52 |
+
logits = (outputs_original.logits + outputs_augmented.logits) / 2
|
53 |
+
predicted_index = logits.argmax()
|
54 |
+
label = model.config.id2label[predicted_index.item()]
|
55 |
+
confidence = torch.softmax(logits, dim=1).max().item() * 100
|
56 |
+
|
57 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
58 |
logging.info("Prediction successful.")
|
59 |
except Exception as e:
|
60 |
result = f"Error during processing: {e}"
|
61 |
logging.error(result)
|
62 |
+
|
63 |
return result
|
64 |
|
|
|
65 |
iface = gr.Interface(
|
66 |
fn=predict_voice,
|
67 |
+
inputs=gr.inputs.Audio(label="Upload Audio File", type="filepath"),
|
68 |
+
outputs=gr.outputs.Textbox(label="Prediction"),
|
69 |
title="Voice Authenticity Detection",
|
70 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results."
|
71 |
)
|
72 |
|
|
|
73 |
iface.launch()
|