Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
import logging
|
6 |
from transformers import AutoModelForAudioClassification
|
7 |
|
@@ -12,7 +13,7 @@ logging.basicConfig(level=logging.INFO)
|
|
12 |
local_model_path = "./"
|
13 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
14 |
|
15 |
-
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512):
|
16 |
"""
|
17 |
Custom feature extraction using Mel spectrogram, tailored for models trained on datasets like AudioSet.
|
18 |
Args:
|
@@ -21,14 +22,25 @@ def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048,
|
|
21 |
n_mels: Number of Mel bands to generate.
|
22 |
n_fft: Length of the FFT window.
|
23 |
hop_length: Number of samples between successive frames.
|
|
|
24 |
Returns:
|
25 |
A tensor representation of the Mel spectrogram features.
|
26 |
"""
|
27 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
28 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
29 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def predict_voice(audio_file_path):
|
34 |
"""
|
@@ -40,11 +52,8 @@ def predict_voice(audio_file_path):
|
|
40 |
"""
|
41 |
try:
|
42 |
features = custom_feature_extraction(audio_file_path)
|
43 |
-
|
44 |
with torch.no_grad():
|
45 |
-
# Corrected: Directly pass the features tensor to the model
|
46 |
outputs = model(features)
|
47 |
-
|
48 |
logits = outputs.logits
|
49 |
predicted_index = logits.argmax()
|
50 |
label = model.config.id2label[predicted_index.item()]
|
@@ -68,4 +77,4 @@ iface = gr.Interface(
|
|
68 |
)
|
69 |
|
70 |
# Launching the interface
|
71 |
-
iface.launch()
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
import logging
|
7 |
from transformers import AutoModelForAudioClassification
|
8 |
|
|
|
13 |
local_model_path = "./"
|
14 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
15 |
|
16 |
+
def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
|
17 |
"""
|
18 |
Custom feature extraction using Mel spectrogram, tailored for models trained on datasets like AudioSet.
|
19 |
Args:
|
|
|
22 |
n_mels: Number of Mel bands to generate.
|
23 |
n_fft: Length of the FFT window.
|
24 |
hop_length: Number of samples between successive frames.
|
25 |
+
target_length: Expected length of the Mel spectrogram in the time dimension.
|
26 |
Returns:
|
27 |
A tensor representation of the Mel spectrogram features.
|
28 |
"""
|
29 |
waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
|
30 |
S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
31 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
32 |
+
mel_tensor = torch.tensor(S_DB).float()
|
33 |
+
|
34 |
+
# Ensure the tensor matches the expected sequence length
|
35 |
+
current_length = mel_tensor.shape[1]
|
36 |
+
if current_length > target_length:
|
37 |
+
mel_tensor = mel_tensor[:, :target_length] # Truncate if longer
|
38 |
+
elif current_length < target_length:
|
39 |
+
padding = target_length - current_length
|
40 |
+
mel_tensor = F.pad(mel_tensor, (0, padding), "constant", 0) # Pad if shorter
|
41 |
+
|
42 |
+
mel_tensor = mel_tensor.unsqueeze(0) # Add batch dimension for compatibility with model
|
43 |
+
return mel_tensor
|
44 |
|
45 |
def predict_voice(audio_file_path):
|
46 |
"""
|
|
|
52 |
"""
|
53 |
try:
|
54 |
features = custom_feature_extraction(audio_file_path)
|
|
|
55 |
with torch.no_grad():
|
|
|
56 |
outputs = model(features)
|
|
|
57 |
logits = outputs.logits
|
58 |
predicted_index = logits.argmax()
|
59 |
label = model.config.id2label[predicted_index.item()]
|
|
|
77 |
)
|
78 |
|
79 |
# Launching the interface
|
80 |
+
iface.launch()
|