Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import logging
|
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
-
# Placeholder for loading your AST-compatible model
|
11 |
model_path = "./"
|
12 |
model = AutoModelForAudioClassification.from_pretrained(model_path)
|
13 |
|
@@ -18,37 +17,41 @@ def preprocess_audio(audio_path, sr=22050):
|
|
18 |
|
19 |
def extract_patches(S_DB, patch_size=16, patch_overlap=6):
|
20 |
stride = patch_size - patch_overlap
|
21 |
-
|
22 |
-
|
23 |
-
patches = []
|
24 |
-
|
25 |
-
for i in range(num_patches_y):
|
26 |
-
for j in range(num_patches_x):
|
27 |
-
start_i = i * stride
|
28 |
-
start_j = j * stride
|
29 |
-
patch = S_DB[start_i:start_i+patch_size, start_j:start_j+patch_size]
|
30 |
-
patches.append(patch.reshape(-1))
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def extract_features(audio, sr):
|
35 |
S = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=128, hop_length=512, n_fft=2048)
|
36 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
37 |
-
|
38 |
patches = extract_patches(S_DB)
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def predict_voice(audio_file_path):
|
45 |
try:
|
46 |
audio, sr = preprocess_audio(audio_file_path)
|
47 |
features = extract_features(audio, sr)
|
48 |
|
49 |
-
#
|
50 |
-
#
|
51 |
-
features = features
|
52 |
|
53 |
with torch.no_grad():
|
54 |
outputs = model(features)
|
@@ -70,7 +73,7 @@ iface = gr.Interface(
|
|
70 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
71 |
outputs=gr.Text(label="Prediction"),
|
72 |
title="Voice Authenticity Detection",
|
73 |
-
description="
|
74 |
)
|
75 |
|
76 |
iface.launch()
|
|
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
|
|
10 |
model_path = "./"
|
11 |
model = AutoModelForAudioClassification.from_pretrained(model_path)
|
12 |
|
|
|
17 |
|
18 |
def extract_patches(S_DB, patch_size=16, patch_overlap=6):
|
19 |
stride = patch_size - patch_overlap
|
20 |
+
num_patches_time = (S_DB.shape[1] - patch_overlap) // stride
|
21 |
+
num_patches_freq = (S_DB.shape[0] - patch_overlap) // stride
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
patches = []
|
24 |
+
for i in range(0, num_patches_freq * stride, stride):
|
25 |
+
for j in range(0, num_patches_time * stride, stride):
|
26 |
+
patch = S_DB[i:i+patch_size, j:j+patch_size]
|
27 |
+
if patch.shape == (patch_size, patch_size):
|
28 |
+
patches.append(patch.reshape(-1))
|
29 |
+
return np.stack(patches) if patches else np.empty((0, patch_size*patch_size))
|
30 |
|
31 |
def extract_features(audio, sr):
|
32 |
S = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=128, hop_length=512, n_fft=2048)
|
33 |
S_DB = librosa.power_to_db(S, ref=np.max)
|
|
|
34 |
patches = extract_patches(S_DB)
|
35 |
+
|
36 |
+
# Assuming each patch is flattened to a vector of size 256 (16*16) and then projected to 768 dimensions
|
37 |
+
# Here we simulate this projection by creating a dummy tensor, in practice, this should be done by a learned linear layer
|
38 |
+
patches_tensor = torch.tensor(patches).float()
|
39 |
+
# Simulate linear projection (e.g., via a fully connected layer) to match the embedding size
|
40 |
+
if patches_tensor.nelement() == 0: # Handle case of no patches
|
41 |
+
patch_embeddings_tensor = torch.empty(0, 768)
|
42 |
+
else:
|
43 |
+
patch_embeddings_tensor = patches_tensor # This is a placeholder, replace with actual projection
|
44 |
+
|
45 |
+
return patch_embeddings_tensor.unsqueeze(0) # Add batch dimension for compatibility with model
|
46 |
|
47 |
def predict_voice(audio_file_path):
|
48 |
try:
|
49 |
audio, sr = preprocess_audio(audio_file_path)
|
50 |
features = extract_features(audio, sr)
|
51 |
|
52 |
+
# Adjust the features size to match the model input, if necessary
|
53 |
+
# Example: Reshape or pad the features tensor
|
54 |
+
# features = adjust_features_shape(features, expected_shape)
|
55 |
|
56 |
with torch.no_grad():
|
57 |
outputs = model(features)
|
|
|
73 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
74 |
outputs=gr.Text(label="Prediction"),
|
75 |
title="Voice Authenticity Detection",
|
76 |
+
description="This system uses advanced audio processing to detect whether a voice is real or AI-generated. Upload an audio file to see the results."
|
77 |
)
|
78 |
|
79 |
iface.launch()
|