Kabatubare commited on
Commit
a29043b
·
verified ·
1 Parent(s): fe0bcff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -8,12 +8,11 @@ import random
8
 
9
  model = AutoModelForAudioClassification.from_pretrained("./")
10
 
11
- def custom_feature_extraction(audio_file_path, sr=16000, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
12
- waveform, sample_rate = librosa.load(audio_file_path, sr=sr)
13
- S = librosa.feature.melspectrogram(y=waveform, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
14
  S_DB = librosa.power_to_db(S, ref=np.max)
15
- pitches, _ = librosa.piptrack(y=waveform, sr=sample_rate, n_fft=n_fft, hop_length=hop_length)
16
- spectral_centroids = librosa.feature.spectral_centroid(y=waveform, sr=sample_rate, n_fft=n_fft, hop_length=hop_length)
17
  features = np.concatenate([S_DB, pitches, spectral_centroids], axis=0)
18
  features_tensor = torch.tensor(features).float()
19
  if features_tensor.shape[1] > target_length:
@@ -30,7 +29,7 @@ def predict_voice(audio_file_path):
30
  try:
31
  waveform, sample_rate = librosa.load(audio_file_path, sr=None)
32
  augmented_waveform = apply_time_shift(waveform)
33
- original_features = custom_feature_extraction(audio_file_path, sr=sample_rate)
34
  augmented_features = custom_feature_extraction(augmented_waveform, sr=sample_rate)
35
  with torch.no_grad():
36
  outputs_original = model(original_features)
 
8
 
9
  model = AutoModelForAudioClassification.from_pretrained("./")
10
 
11
+ def custom_feature_extraction(audio, sr=16000, n_mels=128, n_fft=2048, hop_length=512, target_length=1024):
12
+ S = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
 
13
  S_DB = librosa.power_to_db(S, ref=np.max)
14
+ pitches, _ = librosa.piptrack(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)
15
+ spectral_centroids = librosa.feature.spectral_centroid(y=audio, sr=sr, n_fft=n_fft, hop_length=hop_length)
16
  features = np.concatenate([S_DB, pitches, spectral_centroids], axis=0)
17
  features_tensor = torch.tensor(features).float()
18
  if features_tensor.shape[1] > target_length:
 
29
  try:
30
  waveform, sample_rate = librosa.load(audio_file_path, sr=None)
31
  augmented_waveform = apply_time_shift(waveform)
32
+ original_features = custom_feature_extraction(waveform, sr=sample_rate)
33
  augmented_features = custom_feature_extraction(augmented_waveform, sr=sample_rate)
34
  with torch.no_grad():
35
  outputs_original = model(original_features)