Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,43 +2,35 @@ import numpy as np
|
|
2 |
import torch
|
3 |
import librosa
|
4 |
import gradio as gr
|
5 |
-
from transformers import AutoModelForAudioClassification
|
6 |
import logging
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
model_path = "./"
|
11 |
model = AutoModelForAudioClassification.from_pretrained(model_path)
|
|
|
12 |
|
13 |
def preprocess_audio(audio_path, sr=16000):
|
14 |
-
|
15 |
-
audio, sr = librosa.load(audio_path, sr=sr)
|
16 |
-
# Trim silence from the beginning and the end
|
17 |
audio, _ = librosa.effects.trim(audio)
|
18 |
-
return audio
|
19 |
|
20 |
def extract_features(audio, sr=16000):
|
21 |
-
|
22 |
-
|
23 |
-
# Convert to dB scale
|
24 |
-
S_DB = librosa.power_to_db(S, ref=np.max)
|
25 |
-
# Normally, further feature extraction steps would be here. For this model, we will directly use S_DB.
|
26 |
-
return S_DB
|
27 |
|
28 |
def predict_voice(audio_file_path):
|
29 |
try:
|
30 |
-
audio
|
31 |
-
|
32 |
-
|
33 |
-
# Convert S_DB to tensor and add required batch dimension
|
34 |
-
S_DB_tensor = torch.tensor(S_DB).unsqueeze(0)
|
35 |
|
36 |
with torch.no_grad():
|
37 |
-
outputs = model(
|
38 |
logits = outputs.logits
|
39 |
-
predicted_index = logits.argmax()
|
40 |
-
label =
|
41 |
-
confidence = torch.softmax(logits, dim
|
42 |
|
43 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
44 |
logging.info("Prediction successful.")
|
@@ -54,6 +46,4 @@ iface = gr.Interface(
|
|
54 |
outputs=gr.Text(label="Prediction"),
|
55 |
title="Voice Authenticity Detection",
|
56 |
description="This system uses advanced audio processing to detect whether a voice is real or AI-generated. Upload an audio file to see the results."
|
57 |
-
)
|
58 |
-
|
59 |
-
iface.launch()
|
|
|
2 |
import torch
|
3 |
import librosa
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoModelForAudioClassification, Wav2Vec2Processor
|
6 |
import logging
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
model_path = "./"
|
11 |
model = AutoModelForAudioClassification.from_pretrained(model_path)
|
12 |
+
processor = Wav2Vec2Processor.from_pretrained(model_path)
|
13 |
|
14 |
def preprocess_audio(audio_path, sr=16000):
|
15 |
+
audio, _ = librosa.load(audio_path, sr=sr)
|
|
|
|
|
16 |
audio, _ = librosa.effects.trim(audio)
|
17 |
+
return audio
|
18 |
|
19 |
def extract_features(audio, sr=16000):
|
20 |
+
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
|
21 |
+
return inputs
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def predict_voice(audio_file_path):
|
24 |
try:
|
25 |
+
audio = preprocess_audio(audio_file_path)
|
26 |
+
features = extract_features(audio)
|
|
|
|
|
|
|
27 |
|
28 |
with torch.no_grad():
|
29 |
+
outputs = model(**features)
|
30 |
logits = outputs.logits
|
31 |
+
predicted_index = logits.argmax(dim=-1)
|
32 |
+
label = processor.decode(predicted_index)
|
33 |
+
confidence = torch.softmax(logits, dim=-1).max().item() * 100
|
34 |
|
35 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
36 |
logging.info("Prediction successful.")
|
|
|
46 |
outputs=gr.Text(label="Prediction"),
|
47 |
title="Voice Authenticity Detection",
|
48 |
description="This system uses advanced audio processing to detect whether a voice is real or AI-generated. Upload an audio file to see the results."
|
49 |
+
).launch()
|
|
|
|