Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,36 @@ import numpy as np
|
|
4 |
import torch
|
5 |
from torch.nn.functional import softmax
|
6 |
import librosa
|
|
|
7 |
|
8 |
-
# Path to the local directory where the model files are stored
|
9 |
local_model_path = "./"
|
10 |
|
11 |
# Load the model and feature extractor outside the function to improve performance
|
12 |
extractor = AutoFeatureExtractor.from_pretrained(local_model_path)
|
13 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def predict_voice(audio_file_path):
|
16 |
"""
|
17 |
Predicts whether a voice is real or spoofed from an audio file.
|
@@ -22,22 +44,21 @@ def predict_voice(audio_file_path):
|
|
22 |
Returns:
|
23 |
A string with the prediction and confidence level.
|
24 |
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
|
|
30 |
# Load and preprocess the audio file
|
31 |
-
waveform, sample_rate = librosa.load(
|
32 |
-
|
33 |
-
# Convert the input audio file to model's expected format
|
34 |
inputs = extractor(waveform, return_tensors="pt", sampling_rate=sample_rate)
|
35 |
|
36 |
-
#
|
37 |
-
with torch.no_grad(): # Ensure no gradients are calculated
|
38 |
outputs = model(**inputs)
|
39 |
-
|
40 |
-
# Extract logits, compute the class with the highest score, and calculate confidence
|
41 |
logits = outputs.logits
|
42 |
predicted_index = logits.argmax()
|
43 |
label = model.config.id2label[predicted_index.item()]
|
@@ -46,17 +67,18 @@ def predict_voice(audio_file_path):
|
|
46 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
47 |
except Exception as e:
|
48 |
result = f"An error occurred during processing: {str(e)}"
|
|
|
49 |
return result
|
50 |
|
51 |
-
#
|
52 |
iface = gr.Interface(
|
53 |
fn=predict_voice,
|
54 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
55 |
outputs=gr.Textbox(label="Prediction"),
|
56 |
title="Voice Authenticity Detection",
|
57 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results.",
|
58 |
-
theme="huggingface"
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
iface.launch(share=True, enable_queue=True)
|
|
|
4 |
import torch
|
5 |
from torch.nn.functional import softmax
|
6 |
import librosa
|
7 |
+
import os
|
8 |
|
9 |
+
# Path to the local directory where the model files are stored
|
10 |
local_model_path = "./"
|
11 |
|
12 |
# Load the model and feature extractor outside the function to improve performance
|
13 |
extractor = AutoFeatureExtractor.from_pretrained(local_model_path)
|
14 |
model = AutoModelForAudioClassification.from_pretrained(local_model_path)
|
15 |
|
16 |
+
def safe_path_join(base_path, path):
|
17 |
+
"""
|
18 |
+
Safely join a base path and a potentially unsafe relative path.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
base_path: The base directory path.
|
22 |
+
path: The relative path to join with the base path.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
The safely joined path if it's a subpath of the base_path, otherwise None.
|
26 |
+
"""
|
27 |
+
# Normalize and absolute both paths
|
28 |
+
base_path = os.path.abspath(os.path.normpath(base_path))
|
29 |
+
target_path = os.path.abspath(os.path.normpath(os.path.join(base_path, path)))
|
30 |
+
|
31 |
+
# Ensure the target path is within the base_path directory
|
32 |
+
if os.path.commonpath([base_path]) == os.path.commonpath([base_path, target_path]):
|
33 |
+
return target_path
|
34 |
+
else:
|
35 |
+
return None
|
36 |
+
|
37 |
def predict_voice(audio_file_path):
|
38 |
"""
|
39 |
Predicts whether a voice is real or spoofed from an audio file.
|
|
|
44 |
Returns:
|
45 |
A string with the prediction and confidence level.
|
46 |
"""
|
47 |
+
# Safety check and path normalization
|
48 |
+
expected_base_path = "/expected/path/for/safety"
|
49 |
+
safe_audio_file_path = safe_path_join(expected_base_path, audio_file_path)
|
50 |
+
|
51 |
+
if not safe_audio_file_path:
|
52 |
+
return "Error: Invalid file path."
|
53 |
|
54 |
+
try:
|
55 |
# Load and preprocess the audio file
|
56 |
+
waveform, sample_rate = librosa.load(safe_audio_file_path, sr=16000, mono=True)
|
|
|
|
|
57 |
inputs = extractor(waveform, return_tensors="pt", sampling_rate=sample_rate)
|
58 |
|
59 |
+
with torch.no_grad(): # No gradients needed
|
|
|
60 |
outputs = model(**inputs)
|
61 |
+
|
|
|
62 |
logits = outputs.logits
|
63 |
predicted_index = logits.argmax()
|
64 |
label = model.config.id2label[predicted_index.item()]
|
|
|
67 |
result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%."
|
68 |
except Exception as e:
|
69 |
result = f"An error occurred during processing: {str(e)}"
|
70 |
+
|
71 |
return result
|
72 |
|
73 |
+
# Gradio interface setup with enhancements for scalability and performance
|
74 |
iface = gr.Interface(
|
75 |
fn=predict_voice,
|
76 |
inputs=gr.Audio(label="Upload Audio File", type="filepath"),
|
77 |
outputs=gr.Textbox(label="Prediction"),
|
78 |
title="Voice Authenticity Detection",
|
79 |
description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results.",
|
80 |
+
theme="huggingface",
|
81 |
+
enable_queue=True # Enable queuing to handle high traffic efficiently
|
82 |
)
|
83 |
|
84 |
+
iface.launch(share=True)
|
|