import gradio as gr import librosa import numpy as np import torch import logging from transformers import AutoModelForAudioClassification logging.basicConfig(level=logging.INFO) model_path = "./" model = AutoModelForAudioClassification.from_pretrained(model_path) def augment_and_extract_features(audio_path, sr=16000, n_mfcc=40, n_fft=2048, hop_length=512, target_length=512): y, sr = librosa.load(audio_path, sr=sr) y_pitch_shifted = librosa.effects.pitch_shift(y, sr=sr, n_steps=4) y_time_stretched = librosa.effects.time_stretch(y_pitch_shifted, rate=1.2) mfcc = librosa.feature.mfcc(y=y_time_stretched, sr=sr, n_mfcc=n_mfcc, n_fft=n_fft, hop_length=hop_length) chroma = librosa.feature.chroma_stft(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length) mel = librosa.feature.melspectrogram(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length) contrast = librosa.feature.spectral_contrast(y=y_time_stretched, sr=sr, n_fft=n_fft, hop_length=hop_length) tonnetz = librosa.feature.tonnetz(y=librosa.effects.harmonic(y_time_stretched), sr=sr) features = np.concatenate((mfcc, chroma, mel, contrast, tonnetz), axis=0) features_normalized = (features - np.mean(features, axis=1, keepdims=True)) / np.std(features, axis=1, keepdims=True) if features_normalized.shape[1] > target_length: features_normalized = features_normalized[:, :target_length] else: padding = target_length - features_normalized.shape[1] features_normalized = np.pad(features_normalized, ((0, 0), (0, padding)), 'constant') features_tensor = torch.tensor(features_normalized).float().unsqueeze(0) # Add batch dimension return features_tensor def predict_voice(audio_file_path): try: features_tensor = augment_and_extract_features(audio_file_path) with torch.no_grad(): outputs = model(features_tensor) logits = outputs.logits predicted_index = logits.argmax() label = model.config.id2label[predicted_index.item()] confidence = torch.softmax(logits, dim=1).max().item() * 100 result = f"The voice is classified as '{label}' with a confidence of {confidence:.2f}%." logging.info("Prediction successful.") except Exception as e: result = f"Error during processing: {e}" logging.error(result) return result iface = gr.Interface( fn=predict_voice, inputs=gr.Audio(label="Upload Audio File", type="filepath"), outputs=gr.Textbox(label="Prediction"), title="Voice Authenticity Detection", description="Detects whether a voice is real or AI-generated. Upload an audio file to see the results." ) iface.launch()