File size: 2,498 Bytes
122654c
5cf4eea
75a5b88
 
d97b868
75a5b88
954ac21
122654c
 
 
 
 
 
 
 
 
 
 
 
 
75a5b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97b868
75a5b88
 
 
 
d97b868
9f320da
75a5b88
954ac21
75a5b88
 
 
954ac21
 
 
75a5b88
d97b868
75a5b88
 
 
 
 
 
 
d97b868
75a5b88
9f320da
75a5b88
5cf4eea
75a5b88
 
 
9f320da
954ac21
f63495a
954ac21
 
 
6e9fd21
954ac21
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import torch
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import json
import gradio as gr
import requests

# Path to the model file and Hugging Face URL
model_path = 'food_classification_model.pth'
model_url = "https://huggingface.co/KabeerAmjad/food_classification_model/resolve/main/food_classification_model.pth"

# Download the model file if it's not already available
if not os.path.exists(model_path):
    print(f"Downloading the model from {model_url}...")
    response = requests.get(model_url)
    with open(model_path, 'wb') as f:
        f.write(response.content)
    print("Model downloaded successfully.")

# Load the model with updated weights parameter
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
model.eval()  # Set model to evaluation mode

# Load the model's custom state_dict
try:
    state_dict = torch.load(model_path, map_location=torch.device('cpu'))
    model.load_state_dict(state_dict)
except RuntimeError as e:
    print("Error loading state_dict:", e)
    print("Ensure that the saved model architecture matches ResNet50.")

# Define the image transformations
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225],
    ),
])

# Load labels
with open("config.json") as f:
    labels = json.load(f)

# Function to predict image class
def predict(image):
    # Convert the uploaded file to a PIL image
    input_image = image.convert("RGB")
    
    # Preprocess the image
    input_tensor = preprocess(input_image)
    input_batch = input_tensor.unsqueeze(0)  # Add batch dimension
    
    # Check if a GPU is available and move the input and model to GPU
    if torch.cuda.is_available():
        input_batch = input_batch.to('cuda')
        model.to('cuda')
    
    # Perform inference
    with torch.no_grad():
        output = model(input_batch)
    
    # Get the predicted class with the highest score
    _, predicted_idx = torch.max(output, 1)
    predicted_class = labels[str(predicted_idx.item())]

    return f"Predicted class: {predicted_class}"

# Set up the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Food Classification Model",
    description="Upload an image of food to classify it."
)

# Launch the Gradio app
iface.launch()