File size: 1,495 Bytes
9f320da
5cf4eea
d97b868
 
 
9f320da
d97b868
 
 
 
 
 
 
 
 
 
 
 
 
9f320da
 
 
d97b868
 
 
 
9f320da
d97b868
 
5cf4eea
9f320da
d97b868
5cf4eea
9f320da
 
 
 
53b38ec
 
9f320da
5cf4eea
9f320da
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from PIL import Image

# Load the model architecture and weights
model_id = "KabeerAmjad/food_classification_model"
model = models.resnet50(pretrained=False)  # Do not load the pretrained weights here
model.fc = nn.Linear(model.fc.in_features, 11)  # Adjust the number of classes (replace 11 with your number of classes)
model.load_state_dict(torch.load(model_id))  # Load the model weights you uploaded
model.eval()

# Define the same preprocessing used during training
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# Define the prediction function
def classify_image(img):
    # Preprocess the image
    img = transform(img).unsqueeze(0)  # Add batch dimension
    
    # Make prediction
    with torch.no_grad():
        outputs = model(img)
        probs = torch.softmax(outputs, dim=-1)
    
    # Get the label with the highest probability
    top_label = model.config.id2label[probs.argmax().item()]  # Map to label (use your custom label mapping if needed)
    return top_label

# Create the Gradio interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Food Image Classification",
    description="Upload an image to classify if it’s an apple pie, etc."
)

# Launch the app
iface.launch()