KabeerAmjad's picture
Update app.py
75a5b88 verified
raw
history blame
1.85 kB
import torch
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import json
# Load the model with updated weights parameter
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
model.eval() # Set model to evaluation mode
# Load the model's custom state_dict
model_path = 'path_to_your_model_file.pth'
try:
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
except RuntimeError as e:
print("Error loading state_dict:", e)
print("Ensure that the saved model architecture matches ResNet50.")
# Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
])
# Load labels
with open("imagenet_classes.json") as f:
labels = json.load(f)
# Function to predict image class
def predict(image_path):
# Open the image file
input_image = Image.open(image_path).convert("RGB")
# Preprocess the image
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # Add batch dimension
# Check if a GPU is available and move the input and model to GPU
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
# Perform inference
with torch.no_grad():
output = model(input_batch)
# Get the predicted class with the highest score
_, predicted_idx = torch.max(output, 1)
predicted_class = labels[str(predicted_idx.item())]
return predicted_class
# Example usage
image_path = 'path_to_your_image.jpg'
predicted_class = predict(image_path)
print(f"Predicted class: {predicted_class}")