KabeerAmjad's picture
Update app.py
e6daf1b verified
import os
import torch
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import json
import gradio as gr
import requests
# Path to the model file and Hugging Face URL
model_path = 'food_classification_model.pth'
model_url = "https://huggingface.co/KabeerAmjad/food_classification_model/resolve/main/food_classification_model.pth"
# Download the model file if it's not already available
if not os.path.exists(model_path):
print(f"Downloading the model from {model_url}...")
response = requests.get(model_url)
with open(model_path, 'wb') as f:
f.write(response.content)
print("Model downloaded successfully.")
# Load the model with updated weights parameter
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
model.eval() # Set model to evaluation mode
# Load the model's custom state_dict
try:
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
print("Model loaded successfully.")
except RuntimeError as e:
print("Error loading state_dict:", e)
print("Ensure that the saved model architecture matches ResNet50.")
# Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
])
# Load labels
try:
with open("config.json") as f:
labels = json.load(f)
print("Labels loaded successfully.")
except Exception as e:
print("Error loading labels:", e)
# Function to predict image class
def predict(image):
try:
print("Starting prediction...")
# Convert the uploaded file to a PIL image
input_image = image.convert("RGB")
print(f"Image converted to RGB: {input_image.size}")
# Preprocess the image
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # Add batch dimension
print(f"Input tensor shape after unsqueeze: {input_batch.shape}")
# Check if a GPU is available and move the input and model to GPU
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
print("Using GPU for inference.")
else:
print("GPU not available, using CPU.")
# Perform inference
with torch.no_grad():
output = model(input_batch)
print(f"Inference output shape: {output.shape}")
# Get the predicted class with the highest score
_, predicted_idx = torch.max(output, 1)
predicted_idx = predicted_idx.item()
print(f"Predicted class index: {predicted_idx}")
# Check if the predicted index exists in labels
if str(predicted_idx) in labels:
predicted_class = labels[str(predicted_idx)]
else:
predicted_class = f"Unknown class index: {predicted_idx}. Please check the label mapping."
print(predicted_class)
return f"Predicted class: {predicted_class}"
except Exception as e:
print(f"Error during prediction: {e}")
return f"An error occurred during prediction: {e}"
# Set up the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs="text",
title="Food Classification Model",
description="Upload an image of food to classify it."
)
# Launch the Gradio app
iface.launch()