KabeerAmjad
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,21 @@ import torch
|
|
3 |
from torch import nn
|
4 |
from torchvision import models, transforms
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
-
# Load the model
|
8 |
model_id = "KabeerAmjad/food_classification_model"
|
9 |
-
|
10 |
-
model
|
11 |
-
model.
|
|
|
|
|
|
|
12 |
model.eval()
|
13 |
|
|
|
|
|
|
|
14 |
# Define the same preprocessing used during training
|
15 |
transform = transforms.Compose([
|
16 |
transforms.Resize((224, 224)),
|
@@ -43,3 +50,4 @@ iface = gr.Interface(
|
|
43 |
|
44 |
# Launch the app
|
45 |
iface.launch()
|
|
|
|
3 |
from torch import nn
|
4 |
from torchvision import models, transforms
|
5 |
from PIL import Image
|
6 |
+
from transformers import AutoFeatureExtractor
|
7 |
|
8 |
+
# Load the model from Hugging Face model hub
|
9 |
model_id = "KabeerAmjad/food_classification_model"
|
10 |
+
# Load ResNet50 model and adjust the final layer
|
11 |
+
model = models.resnet50(pretrained=False)
|
12 |
+
model.fc = nn.Linear(model.fc.in_features, 11) # Adjust the output layer to match your number of classes
|
13 |
+
|
14 |
+
# Load the weights from the Hugging Face model hub
|
15 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url(f"https://huggingface.co/{model_id}/resolve/main/food_classification_model.pth"))
|
16 |
model.eval()
|
17 |
|
18 |
+
# Load the feature extractor
|
19 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
20 |
+
|
21 |
# Define the same preprocessing used during training
|
22 |
transform = transforms.Compose([
|
23 |
transforms.Resize((224, 224)),
|
|
|
50 |
|
51 |
# Launch the app
|
52 |
iface.launch()
|
53 |
+
|