Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +76 -0
- requirements.txt +15 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import pinecone
|
5 |
+
import time
|
6 |
+
from langchain import OpenAI
|
7 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings
|
11 |
+
from langchain.chains.question_answering import load_qa_chain
|
12 |
+
from langchain.vectorstores import FAISS
|
13 |
+
from langchain.vectorstores import Pinecone
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv() # take environment variables from .env (especially openai api key)
|
17 |
+
|
18 |
+
st.title("Research Tool π")
|
19 |
+
st.sidebar.title("Article URLs")
|
20 |
+
|
21 |
+
|
22 |
+
urls = []
|
23 |
+
for i in range(3):
|
24 |
+
url = st.sidebar.text_input(f"URL {i+1}")
|
25 |
+
urls.append(url)
|
26 |
+
|
27 |
+
main_placeholder = st.empty()
|
28 |
+
|
29 |
+
|
30 |
+
query = main_placeholder.text_input("Question: ")
|
31 |
+
if query:
|
32 |
+
loader = UnstructuredURLLoader(urls=urls)
|
33 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
34 |
+
data = loader.load()
|
35 |
+
# split data
|
36 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
37 |
+
separators=['\n\n', '\n', '.', ','],
|
38 |
+
chunk_size=1000
|
39 |
+
)
|
40 |
+
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
41 |
+
docs = text_splitter.split_documents(data)
|
42 |
+
# create embeddings and save it to FAISS index
|
43 |
+
embeddings = OpenAIEmbeddings(api_key=os.getenv('OPENAI_API_KEY'))
|
44 |
+
|
45 |
+
pinecone.init(
|
46 |
+
api_key=os.getenv('PINECONE_API_KEY'),
|
47 |
+
environment="gcp-starter"
|
48 |
+
)
|
49 |
+
index_name = "langchainvector"
|
50 |
+
index = Pinecone.from_documents(docs, embeddings, index_name=index_name)
|
51 |
+
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
52 |
+
def retrieve_query(mquery, k=3):
|
53 |
+
matching_results = index.similarity_search(mquery, k=k)
|
54 |
+
return matching_results
|
55 |
+
llm = OpenAI(temperature=0.5)
|
56 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
57 |
+
def retrieve_ans(mquery):
|
58 |
+
doc_search = retrieve_query(mquery)
|
59 |
+
print(doc_search)
|
60 |
+
response = chain.run(input_documents = doc_search, question=query)
|
61 |
+
return response
|
62 |
+
|
63 |
+
|
64 |
+
result = retrieve_ans(query)
|
65 |
+
st.header("Answer")
|
66 |
+
st.write(result)
|
67 |
+
# Display sources, if available
|
68 |
+
# sources = result.get("sources", "")
|
69 |
+
# if sources:
|
70 |
+
# st.subheader("Sources:")
|
71 |
+
# sources_list = sources.split("\n") # Split the sources by newline
|
72 |
+
# for source in sources_list:
|
73 |
+
# st.write(source)
|
74 |
+
|
75 |
+
|
76 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
python-dotenv
|
3 |
+
streamlit
|
4 |
+
unstructured
|
5 |
+
tiktoken
|
6 |
+
libmagic
|
7 |
+
python-magic
|
8 |
+
python-magic-bin
|
9 |
+
OpenAI
|
10 |
+
pandas
|
11 |
+
numpy
|
12 |
+
scipy
|
13 |
+
pinecone-client
|
14 |
+
scikit-learn
|
15 |
+
matplotlib
|