Spaces:
Sleeping
Sleeping
File size: 8,889 Bytes
056020b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
from super_gradients.training import models
from deep_sort_torch.deep_sort.deep_sort import DeepSort
from super_gradients.training import models
from super_gradients.training.pipelines.pipelines import DetectionPipeline
from model_tools import get_prediction, get_color
import cv2
import datetime
import torch
import os
import gradio as gr
import numpy as np
np.float = float
np.int = int
np.object = object
np.bool = bool
dir = os.getcwd()+ '/uploads/'
inp = gr.Image(type="pil")
output = gr.Image(type="pil")
examples=[[dir +"cafe_fall.mp4","Fall in cafe"],
[dir +"slip.mp4","Run and Fall2"],
[dir +"skate.mp4","Skate and Fall"],
[dir +"kitchen.mp4","Fall in kitchen"],
[dir +"studycam.mp4","Experiment fall"]]
ckpt_path = os.getcwd() + "/checkpoints/best181-8376/ckpt_latest.pth"
best_model = models.get('yolo_nas_s',
num_classes=1,
checkpoint_path=ckpt_path)
best_model = best_model.to("cuda" if torch.cuda.is_available() else "cpu")
#best_model = models.get("yolo_nas_s", pretrained_weights="coco")
best_model.eval()
#### Initiatize tracker
tracker_model = os.getcwd() + "/checkpoints/ckpt.t7"
tracker = DeepSort(model_path=tracker_model,max_age=30,nn_budget=100, max_iou_distance=0.7, max_dist=0.2)
out_path=dir
filename = 'demo.webm'
description = "Yolo model to detect if a person is falling or fallen with deepsort to track how long the subject has fallen.\
If the duration crosses a threshold of 5s, the bounding box will turn red and the subject be labelled as IMMOBILE."
def vid_predict(media):
pipeline = DetectionPipeline(
model=best_model,
image_processor=best_model._image_processor,
post_prediction_callback=best_model.get_post_prediction_callback(iou=0.25, conf=0.70),
class_names=best_model._class_names,
)
print("Running Predict")
save_to = os.path.join(out_path, filename)
cap = cv2.VideoCapture(media)
if cap.isOpened():
width = cap.get(3) # float `widtqh`
print('width',width)
height = cap.get(4)
print('Height',height)
fps = cap.get(cv2.CAP_PROP_FPS)
# or
fps = cap.get(5)
print('fps:', fps) # float `fps`
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)
# or frame_count = cap.get(7)
print('frames count:', frame_count) # float `frame_count`
out = cv2.VideoWriter(save_to, cv2.VideoWriter_fourcc(*'VP08'), fps, (640,640))
fall_records = {}
frame_id = 0
while True:
frame_id += 1
if frame_id > frame_count:
break
print('frame_id', frame_id)
ret, img = cap.read()
#img = cv2.resize(img, (1280, 720),cv2.INTER_AREA)
# if height > 720:
# print("Reshaped")
img = cv2.resize(img, (640, 640),cv2.INTER_AREA)
width, height = img.shape[1], img.shape[0]
### recalibrate color channels to rgb for use in model prediction
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
overlay = img.copy()
### create list objects needed for tracking
detects = []
conffs = []
if ret:
print("START ")
model_predictions = get_prediction(best_model, img_rgb, pipeline)
print(model_predictions)
classnames = ['Fall-Detected']
results = model_predictions
bboxes = results.bboxes_xyxy
if len(bboxes) >= 1:
confs = results.confidence
labels = results.labels
for bbox, conf, label in zip(bboxes, confs, labels):
label = int(label)
conf = np.round(conf, decimals=2)
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
### for tracking model
bw = abs(x1 - x2)
bh = abs(y1 - y2)
cx , cy = x1 + bw//2, y1 + bh//2
coords = [cx, cy, bw, bh]
detects.append(coords)
conffs.append([float(conf)])
### Tracker
xywhs = torch.tensor(detects)
conffs = torch.tensor(conffs)
#tracker_results = deepsort.update(xywhs, confss,oids, img)
tracker_results = tracker.update(xywhs, conffs, img_rgb)
### conduct check on track_records
now = datetime.datetime.now()
if len(fall_records.keys()) >=1:
#print(fall_records)
### reset timer for calculating immobility to 0 if time lapsed since last detection of fall more than N seconds
fall_records = {id: item if (now - item['present']).total_seconds() <= 3.0 else {'start':now, 'present': now} for id, item in fall_records.items() }
if len(tracker_results)>=1:
for track,conf,label in zip(tracker_results,conffs, labels):
conf = conf.numpy()[0]
duration = 0
minute = 0
sec = 0
x1, y1 ,x2, y2, id = track
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
if id in fall_records.keys():
### record present time
present = datetime.datetime.now()
fall_records[id].update({'present': present})
### calculate duration
duration = fall_records[id]['present'] - fall_records[id]['start']
duration = int(duration.total_seconds())
### record status
fall_records[id].update({'status': 'IMMOBILE'}) if duration >= 5 else fall_records[id].update({'status': None})
print(f"Frame:{frame_id} ID: {id} Conf: {conf} Duration:{duration} Status: {fall_records[id]['status']}")
print(fall_records[id])
minute, sec = divmod(duration,60)
else:
start = datetime.datetime.now()
fall_records[id] = {'start': start}
fall_records[id].update({'present': start})
classname = classnames[int(label)]
color = get_color(id*20)
if duration < 5:
display_text = f"{str(classname)} ({str(id)}) {str(conf)} Elapsed: {round(minute)}min{round(sec)}s"
(w, h), _ = cv2.getTextSize(
display_text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 1)
cv2.rectangle(img,(x1, y1), (x2, y2),color,1)
cv2.rectangle(overlay,(x1, y1), (x2, y2),color,1)
cv2.rectangle(overlay, (min(x1,int(width)-w), max(1,y1 - 20)), (min(x1+ w,int(width)) , max(21,y1)), color, cv2.FILLED)
else:
display_text = f"{str(classname)} ({str(id)}) {str(conf)} IMMOBILE: {round(minute)}min{round(sec)}s "
(w, h), _ = cv2.getTextSize(
display_text, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 1)
cv2.rectangle(img,(x1, y1), (x2, y2),(0,0,255),1)
cv2.rectangle(overlay,(x1, y1), (x2, y2),(0,0,255),1)
cv2.rectangle(overlay, (min(x1,int(width)-w), max(1,y1 - 20)), (min(x1+ w,int(width)) , max(21,y1)), (0,0,255), cv2.FILLED)
cv2.putText(img,display_text, (min(x1,int(width)-w), max(21,y1)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0),2)
cv2.putText(overlay,display_text, (min(x1,int(width)-w), max(21,y1)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0),2)
alpha = 0.6
masked = cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0)
out.write(masked)
cap.release()
out.release()
cv2.destroyAllWindows()
return save_to
demo = gr.Interface(fn=vid_predict, inputs=gr.Video(), outputs=gr.Video(), examples=examples, description=description, title='Fall detection and tracking with deep sort')
if __name__ == "__main__":
demo.launch(show_api=False) |