Spaces:
Sleeping
Sleeping
File size: 6,186 Bytes
01e1043 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import cv2
import time
import argparse
import torch
import warnings
import numpy as np
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/fast-reid'))
from detector import build_detector
from deep_sort import build_tracker
from utils.draw import draw_boxes
from utils.parser import get_config
from utils.log import get_logger
from utils.io import write_results
class VideoTracker(object):
def __init__(self, cfg, args, video_path):
self.cfg = cfg
self.args = args
self.video_path = video_path
self.logger = get_logger("root")
use_cuda = args.use_cuda and torch.cuda.is_available()
if not use_cuda:
warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)
if args.display:
cv2.namedWindow("test", cv2.WINDOW_NORMAL)
cv2.resizeWindow("test", args.display_width, args.display_height)
if args.cam != -1:
print("Using webcam " + str(args.cam))
self.vdo = cv2.VideoCapture(args.cam)
else:
self.vdo = cv2.VideoCapture()
self.detector = build_detector(cfg, use_cuda=use_cuda)
self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
self.class_names = self.detector.class_names
def __enter__(self):
if self.args.cam != -1:
ret, frame = self.vdo.read()
assert ret, "Error: Camera error"
self.im_width = frame.shape[0]
self.im_height = frame.shape[1]
else:
assert os.path.isfile(self.video_path), "Path error"
self.vdo.open(self.video_path)
self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
assert self.vdo.isOpened()
if self.args.save_path:
os.makedirs(self.args.save_path, exist_ok=True)
# path of saved video and results
self.save_video_path = os.path.join(self.args.save_path, "results.avi")
self.save_results_path = os.path.join(self.args.save_path, "results.txt")
# create video writer
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
self.writer = cv2.VideoWriter(self.save_video_path, fourcc, 20, (self.im_width, self.im_height))
# logging
self.logger.info("Save results to {}".format(self.args.save_path))
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
if exc_type:
print(exc_type, exc_value, exc_traceback)
def run(self):
results = []
idx_frame = 0
while self.vdo.grab():
idx_frame += 1
if idx_frame % self.args.frame_interval:
continue
start = time.time()
_, ori_im = self.vdo.retrieve()
im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
# do detection
bbox_xywh, cls_conf, cls_ids = self.detector(im)
# select person class
mask = cls_ids == 0
bbox_xywh = bbox_xywh[mask]
# bbox dilation just in case bbox too small, delete this line if using a better pedestrian detector
bbox_xywh[:, 3:] *= 1.2
cls_conf = cls_conf[mask]
# do tracking
outputs = self.deepsort.update(bbox_xywh, cls_conf, im)
# draw boxes for visualization
if len(outputs) > 0:
bbox_tlwh = []
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -1]
ori_im = draw_boxes(ori_im, bbox_xyxy, identities)
for bb_xyxy in bbox_xyxy:
bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(bb_xyxy))
results.append((idx_frame - 1, bbox_tlwh, identities))
end = time.time()
if self.args.display:
cv2.imshow("test", ori_im)
cv2.waitKey(1)
if self.args.save_path:
self.writer.write(ori_im)
# save results
write_results(self.save_results_path, results, 'mot')
# logging
self.logger.info("time: {:.03f}s, fps: {:.03f}, detection numbers: {}, tracking numbers: {}" \
.format(end - start, 1 / (end - start), bbox_xywh.shape[0], len(outputs)))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("VIDEO_PATH", type=str)
parser.add_argument("--config_mmdetection", type=str, default="./configs/mmdet.yaml")
parser.add_argument("--config_detection", type=str, default="./configs/yolov3.yaml")
parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
parser.add_argument("--config_fastreid", type=str, default="./configs/fastreid.yaml")
parser.add_argument("--fastreid", action="store_true")
parser.add_argument("--mmdet", action="store_true")
# parser.add_argument("--ignore_display", dest="display", action="store_false", default=True)
parser.add_argument("--display", action="store_true")
parser.add_argument("--frame_interval", type=int, default=1)
parser.add_argument("--display_width", type=int, default=800)
parser.add_argument("--display_height", type=int, default=600)
parser.add_argument("--save_path", type=str, default="./output/")
parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
cfg = get_config()
if args.mmdet:
cfg.merge_from_file(args.config_mmdetection)
cfg.USE_MMDET = True
else:
cfg.merge_from_file(args.config_detection)
cfg.USE_MMDET = False
cfg.merge_from_file(args.config_deepsort)
if args.fastreid:
cfg.merge_from_file(args.config_fastreid)
cfg.USE_FASTREID = True
else:
cfg.USE_FASTREID = False
with VideoTracker(cfg, args, video_path=args.VIDEO_PATH) as vdo_trk:
vdo_trk.run()
|