File size: 14,419 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import numpy as np
import cv2
import glob
from pathlib import Path
from tqdm import tqdm
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.utils.image import load_images, rgb, enlarge_seg_masks
from copy import deepcopy
from scipy.optimize import minimize
import os
from collections import defaultdict
import dust3r.eval_metadata
from dust3r.eval_metadata import dataset_metadata

def eval_mono_depth_estimation(args, model, device):
    metadata = dataset_metadata.get(args.eval_dataset)
    if metadata is None:
        raise ValueError(f"Unknown dataset: {args.eval_dataset}")
    
    img_path = metadata.get('img_path')
    if 'img_path_func' in metadata:
        img_path = metadata['img_path_func'](args)
    
    process_func = metadata.get('process_func')
    if process_func is None:
        raise ValueError(f"No processing function defined for dataset: {args.eval_dataset}")
    
    for filelist, save_dir in process_func(args, img_path):
        Path(save_dir).mkdir(parents=True, exist_ok=True)
        eval_mono_depth(args, model, device, filelist, save_dir=save_dir)


def eval_mono_depth(args, model, device, filelist, save_dir=None):
    model.eval()
    load_img_size = 512
    for file in tqdm(filelist):
        # construct the "image pair" for the single image
        file = [file]
        imgs = load_images(file, size=load_img_size, verbose=False, crop= not args.no_crop)
        imgs = [imgs[0], deepcopy(imgs[0])]
        imgs[1]['idx'] = 1

        pairs = make_pairs(imgs, symmetrize=True, prefilter=None)
        output = inference(pairs, model, device, batch_size=1, verbose=False)
        depth_map = output['pred1']['pts3d'][...,-1].mean(dim=0)

        if save_dir is not None:
            #save the depth map to the save_dir as npy
            np.save(f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.npy')}", depth_map.cpu().numpy())
            # also save the png
            depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
            depth_map = (depth_map * 255).cpu().numpy().astype(np.uint8)
            cv2.imwrite(f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.png')}", depth_map)



## used for calculating the depth evaluation metrics


def group_by_directory(pathes, idx=-1):
    """
    Groups the file paths based on the second-to-last directory in their paths.

    Parameters:
    - pathes (list): List of file paths.

    Returns:
    - dict: A dictionary where keys are the second-to-last directory names and values are lists of file paths.
    """
    grouped_pathes = defaultdict(list)

    for path in pathes:
        # Extract the second-to-last directory
        dir_name = os.path.dirname(path).split('/')[idx]
        grouped_pathes[dir_name].append(path)
    
    return grouped_pathes


def depth2disparity(depth, return_mask=False):
    if isinstance(depth, torch.Tensor):
        disparity = torch.zeros_like(depth)
    elif isinstance(depth, np.ndarray):
        disparity = np.zeros_like(depth)
    non_negtive_mask = depth > 0
    disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
    if return_mask:
        return disparity, non_negtive_mask
    else:
        return disparity

def absolute_error_loss(params, predicted_depth, ground_truth_depth):
    s, t = params

    predicted_aligned = s * predicted_depth + t

    abs_error = np.abs(predicted_aligned - ground_truth_depth)
    return np.sum(abs_error)

def absolute_value_scaling(predicted_depth, ground_truth_depth, s=1, t=0):
    predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1)
    ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1)
    
    initial_params = [s, t]  # s = 1, t = 0
    
    result = minimize(absolute_error_loss, initial_params, args=(predicted_depth_np, ground_truth_depth_np))
    
    s, t = result.x  
    return s, t

def absolute_value_scaling2(predicted_depth, ground_truth_depth, s_init=1.0, t_init=0.0, lr=1e-4, max_iters=1000, tol=1e-6):
    # Initialize s and t as torch tensors with requires_grad=True
    s = torch.tensor([s_init], requires_grad=True, device=predicted_depth.device, dtype=predicted_depth.dtype)
    t = torch.tensor([t_init], requires_grad=True, device=predicted_depth.device, dtype=predicted_depth.dtype)

    optimizer = torch.optim.Adam([s, t], lr=lr)
    
    prev_loss = None

    for i in range(max_iters):
        optimizer.zero_grad()

        # Compute predicted aligned depth
        predicted_aligned = s * predicted_depth + t

        # Compute absolute error
        abs_error = torch.abs(predicted_aligned - ground_truth_depth)

        # Compute loss
        loss = torch.sum(abs_error)

        # Backpropagate
        loss.backward()

        # Update parameters
        optimizer.step()

        # Check convergence
        if prev_loss is not None and torch.abs(prev_loss - loss) < tol:
            break

        prev_loss = loss.item()

    return s.detach().item(), t.detach().item()

def depth_evaluation(predicted_depth_original, ground_truth_depth_original, max_depth=80, custom_mask=None, post_clip_min=None, post_clip_max=None, pre_clip_min=None, pre_clip_max=None,
                     align_with_lstsq=False, align_with_lad=False, align_with_lad2=False, lr=1e-4, max_iters=1000, use_gpu=False, align_with_scale=False,
                     disp_input=False):
    """
    Evaluate the depth map using various metrics and return a depth error parity map, with an option for least squares alignment.
    
    Args:
        predicted_depth (numpy.ndarray or torch.Tensor): The predicted depth map.
        ground_truth_depth (numpy.ndarray or torch.Tensor): The ground truth depth map.
        max_depth (float): The maximum depth value to consider. Default is 80 meters.
        align_with_lstsq (bool): If True, perform least squares alignment of the predicted depth with ground truth.
    
    Returns:
        dict: A dictionary containing the evaluation metrics.
        torch.Tensor: The depth error parity map.
    """
    
    if isinstance(predicted_depth_original, np.ndarray):
        predicted_depth_original = torch.from_numpy(predicted_depth_original)
    if isinstance(ground_truth_depth_original, np.ndarray):
        ground_truth_depth_original = torch.from_numpy(ground_truth_depth_original)
    if custom_mask is not None and isinstance(custom_mask, np.ndarray):
        custom_mask = torch.from_numpy(custom_mask)

    # if the dimension is 3, flatten to 2d along the batch dimension
    if predicted_depth_original.dim() == 3:
        _, h, w = predicted_depth_original.shape
        predicted_depth_original = predicted_depth_original.view(-1, w)
        ground_truth_depth_original = ground_truth_depth_original.view(-1, w)
        if custom_mask is not None:
            custom_mask = custom_mask.view(-1, w)

    # put to device
    if use_gpu:
        predicted_depth_original = predicted_depth_original.cuda()
        ground_truth_depth_original = ground_truth_depth_original.cuda()
    
    # Filter out depths greater than max_depth
    if max_depth is not None:
        mask = (ground_truth_depth_original > 0) & (ground_truth_depth_original < max_depth)
    else:
        mask = (ground_truth_depth_original > 0)

    
    predicted_depth = predicted_depth_original[mask]
    ground_truth_depth = ground_truth_depth_original[mask]

    # Clip the depth values
    if pre_clip_min is not None:
        predicted_depth = torch.clamp(predicted_depth, min=pre_clip_min)
    if pre_clip_max is not None:
        predicted_depth = torch.clamp(predicted_depth, max=pre_clip_max)

    if disp_input: # align the pred to gt in the disparity space
        real_gt = ground_truth_depth.clone()
        ground_truth_depth = 1 / (ground_truth_depth + 1e-8)

    # various alignment methods
    if align_with_lstsq:
        # Convert to numpy for lstsq
        predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1, 1)
        ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1, 1)
        
        # Add a column of ones for the shift term
        A = np.hstack([predicted_depth_np, np.ones_like(predicted_depth_np)])
        
        # Solve for scale (s) and shift (t) using least squares
        result = np.linalg.lstsq(A, ground_truth_depth_np, rcond=None)
        s, t = result[0][0], result[0][1]

        # convert to torch tensor
        s = torch.tensor(s, device=predicted_depth_original.device)
        t = torch.tensor(t, device=predicted_depth_original.device)
        
        # Apply scale and shift
        predicted_depth = s * predicted_depth + t
    elif align_with_lad:
        s, t = absolute_value_scaling(predicted_depth, ground_truth_depth, s=torch.median(ground_truth_depth) / torch.median(predicted_depth))
        predicted_depth = s * predicted_depth + t
    elif align_with_lad2:
        s_init = (torch.median(ground_truth_depth) / torch.median(predicted_depth)).item()
        s, t = absolute_value_scaling2(predicted_depth, ground_truth_depth, s_init=s_init, lr=lr, max_iters=max_iters)
        predicted_depth = s * predicted_depth + t
    elif align_with_scale:
        # Compute initial scale factor 's' using the closed-form solution (L2 norm)
        dot_pred_gt = torch.nanmean(ground_truth_depth)
        dot_pred_pred = torch.nanmean(predicted_depth)
        s = dot_pred_gt / dot_pred_pred

        # Iterative reweighted least squares using the Weiszfeld method
        for _ in range(10):
            # Compute residuals between scaled predictions and ground truth
            residuals = s * predicted_depth - ground_truth_depth
            abs_residuals = residuals.abs() + 1e-8  # Add small constant to avoid division by zero
            
            # Compute weights inversely proportional to the residuals
            weights = 1.0 / abs_residuals
            
            # Update 's' using weighted sums
            weighted_dot_pred_gt = torch.sum(weights * predicted_depth * ground_truth_depth)
            weighted_dot_pred_pred = torch.sum(weights * predicted_depth ** 2)
            s = weighted_dot_pred_gt / weighted_dot_pred_pred

        # Optionally clip 's' to prevent extreme scaling
        s = s.clamp(min=1e-3)
        
        # Detach 's' if you want to stop gradients from flowing through it
        s = s.detach()
        
        # Apply the scale factor to the predicted depth
        predicted_depth = s * predicted_depth

    else:
        # Align the predicted depth with the ground truth using median scaling
        scale_factor = torch.median(ground_truth_depth) / torch.median(predicted_depth)
        predicted_depth *= scale_factor

    if disp_input:
        # convert back to depth
        ground_truth_depth = real_gt
        predicted_depth = depth2disparity(predicted_depth)

    # Clip the predicted depth values
    if post_clip_min is not None:
        predicted_depth = torch.clamp(predicted_depth, min=post_clip_min)
    if post_clip_max is not None:
        predicted_depth = torch.clamp(predicted_depth, max=post_clip_max)

    if custom_mask is not None:
        assert custom_mask.shape == ground_truth_depth_original.shape
        mask_within_mask = custom_mask.cpu()[mask]
        predicted_depth = predicted_depth[mask_within_mask]
        ground_truth_depth = ground_truth_depth[mask_within_mask]

    # Calculate the metrics
    abs_rel = torch.mean(torch.abs(predicted_depth - ground_truth_depth) / ground_truth_depth).item()
    sq_rel = torch.mean(((predicted_depth - ground_truth_depth) ** 2) / ground_truth_depth).item()
    
    # Correct RMSE calculation
    rmse = torch.sqrt(torch.mean((predicted_depth - ground_truth_depth) ** 2)).item()
    
    # Clip the depth values to avoid log(0)
    predicted_depth = torch.clamp(predicted_depth, min=1e-5)
    log_rmse = torch.sqrt(torch.mean((torch.log(predicted_depth) - torch.log(ground_truth_depth)) ** 2)).item()
    
    # Calculate the accuracy thresholds
    max_ratio = torch.maximum(predicted_depth / ground_truth_depth, ground_truth_depth / predicted_depth)
    threshold_1 = torch.mean((max_ratio < 1.25).float()).item()
    threshold_2 = torch.mean((max_ratio < 1.25 ** 2).float()).item()
    threshold_3 = torch.mean((max_ratio < 1.25 ** 3).float()).item()

    # Compute the depth error parity map
    if align_with_lstsq or align_with_lad or align_with_lad2:
        predicted_depth_original = predicted_depth_original * s + t
        if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
        depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
    elif align_with_scale:
        predicted_depth_original = predicted_depth_original * s
        if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
        depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
    else:
        predicted_depth_original = predicted_depth_original * scale_factor
        if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
        depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
    
    # Reshape the depth_error_parity_map back to the original image size
    depth_error_parity_map_full = torch.zeros_like(ground_truth_depth_original)
    depth_error_parity_map_full = torch.where(mask, depth_error_parity_map, depth_error_parity_map_full)

    predict_depth_map_full = predicted_depth_original

    gt_depth_map_full = torch.zeros_like(ground_truth_depth_original)
    gt_depth_map_full = torch.where(mask, ground_truth_depth_original, gt_depth_map_full)

    num_valid_pixels = torch.sum(mask).item() if custom_mask is None else torch.sum(mask_within_mask).item()
    if num_valid_pixels == 0:
        abs_rel, sq_rel, rmse, log_rmse, threshold_1, threshold_2, threshold_3 = 0, 0, 0, 0, 0, 0, 0

    results = {
        'Abs Rel': abs_rel,
        'Sq Rel': sq_rel,
        'RMSE': rmse,
        'Log RMSE': log_rmse,
        'δ < 1.25': threshold_1,
        'δ < 1.25^2': threshold_2,
        'δ < 1.25^3': threshold_3,
        'valid_pixels': num_valid_pixels
    }

    return results, depth_error_parity_map_full, predict_depth_map_full, gt_depth_map_full