File size: 14,419 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import torch
import numpy as np
import cv2
import glob
from pathlib import Path
from tqdm import tqdm
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.utils.image import load_images, rgb, enlarge_seg_masks
from copy import deepcopy
from scipy.optimize import minimize
import os
from collections import defaultdict
import dust3r.eval_metadata
from dust3r.eval_metadata import dataset_metadata
def eval_mono_depth_estimation(args, model, device):
metadata = dataset_metadata.get(args.eval_dataset)
if metadata is None:
raise ValueError(f"Unknown dataset: {args.eval_dataset}")
img_path = metadata.get('img_path')
if 'img_path_func' in metadata:
img_path = metadata['img_path_func'](args)
process_func = metadata.get('process_func')
if process_func is None:
raise ValueError(f"No processing function defined for dataset: {args.eval_dataset}")
for filelist, save_dir in process_func(args, img_path):
Path(save_dir).mkdir(parents=True, exist_ok=True)
eval_mono_depth(args, model, device, filelist, save_dir=save_dir)
def eval_mono_depth(args, model, device, filelist, save_dir=None):
model.eval()
load_img_size = 512
for file in tqdm(filelist):
# construct the "image pair" for the single image
file = [file]
imgs = load_images(file, size=load_img_size, verbose=False, crop= not args.no_crop)
imgs = [imgs[0], deepcopy(imgs[0])]
imgs[1]['idx'] = 1
pairs = make_pairs(imgs, symmetrize=True, prefilter=None)
output = inference(pairs, model, device, batch_size=1, verbose=False)
depth_map = output['pred1']['pts3d'][...,-1].mean(dim=0)
if save_dir is not None:
#save the depth map to the save_dir as npy
np.save(f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.npy')}", depth_map.cpu().numpy())
# also save the png
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_map = (depth_map * 255).cpu().numpy().astype(np.uint8)
cv2.imwrite(f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.png')}", depth_map)
## used for calculating the depth evaluation metrics
def group_by_directory(pathes, idx=-1):
"""
Groups the file paths based on the second-to-last directory in their paths.
Parameters:
- pathes (list): List of file paths.
Returns:
- dict: A dictionary where keys are the second-to-last directory names and values are lists of file paths.
"""
grouped_pathes = defaultdict(list)
for path in pathes:
# Extract the second-to-last directory
dir_name = os.path.dirname(path).split('/')[idx]
grouped_pathes[dir_name].append(path)
return grouped_pathes
def depth2disparity(depth, return_mask=False):
if isinstance(depth, torch.Tensor):
disparity = torch.zeros_like(depth)
elif isinstance(depth, np.ndarray):
disparity = np.zeros_like(depth)
non_negtive_mask = depth > 0
disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
if return_mask:
return disparity, non_negtive_mask
else:
return disparity
def absolute_error_loss(params, predicted_depth, ground_truth_depth):
s, t = params
predicted_aligned = s * predicted_depth + t
abs_error = np.abs(predicted_aligned - ground_truth_depth)
return np.sum(abs_error)
def absolute_value_scaling(predicted_depth, ground_truth_depth, s=1, t=0):
predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1)
ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1)
initial_params = [s, t] # s = 1, t = 0
result = minimize(absolute_error_loss, initial_params, args=(predicted_depth_np, ground_truth_depth_np))
s, t = result.x
return s, t
def absolute_value_scaling2(predicted_depth, ground_truth_depth, s_init=1.0, t_init=0.0, lr=1e-4, max_iters=1000, tol=1e-6):
# Initialize s and t as torch tensors with requires_grad=True
s = torch.tensor([s_init], requires_grad=True, device=predicted_depth.device, dtype=predicted_depth.dtype)
t = torch.tensor([t_init], requires_grad=True, device=predicted_depth.device, dtype=predicted_depth.dtype)
optimizer = torch.optim.Adam([s, t], lr=lr)
prev_loss = None
for i in range(max_iters):
optimizer.zero_grad()
# Compute predicted aligned depth
predicted_aligned = s * predicted_depth + t
# Compute absolute error
abs_error = torch.abs(predicted_aligned - ground_truth_depth)
# Compute loss
loss = torch.sum(abs_error)
# Backpropagate
loss.backward()
# Update parameters
optimizer.step()
# Check convergence
if prev_loss is not None and torch.abs(prev_loss - loss) < tol:
break
prev_loss = loss.item()
return s.detach().item(), t.detach().item()
def depth_evaluation(predicted_depth_original, ground_truth_depth_original, max_depth=80, custom_mask=None, post_clip_min=None, post_clip_max=None, pre_clip_min=None, pre_clip_max=None,
align_with_lstsq=False, align_with_lad=False, align_with_lad2=False, lr=1e-4, max_iters=1000, use_gpu=False, align_with_scale=False,
disp_input=False):
"""
Evaluate the depth map using various metrics and return a depth error parity map, with an option for least squares alignment.
Args:
predicted_depth (numpy.ndarray or torch.Tensor): The predicted depth map.
ground_truth_depth (numpy.ndarray or torch.Tensor): The ground truth depth map.
max_depth (float): The maximum depth value to consider. Default is 80 meters.
align_with_lstsq (bool): If True, perform least squares alignment of the predicted depth with ground truth.
Returns:
dict: A dictionary containing the evaluation metrics.
torch.Tensor: The depth error parity map.
"""
if isinstance(predicted_depth_original, np.ndarray):
predicted_depth_original = torch.from_numpy(predicted_depth_original)
if isinstance(ground_truth_depth_original, np.ndarray):
ground_truth_depth_original = torch.from_numpy(ground_truth_depth_original)
if custom_mask is not None and isinstance(custom_mask, np.ndarray):
custom_mask = torch.from_numpy(custom_mask)
# if the dimension is 3, flatten to 2d along the batch dimension
if predicted_depth_original.dim() == 3:
_, h, w = predicted_depth_original.shape
predicted_depth_original = predicted_depth_original.view(-1, w)
ground_truth_depth_original = ground_truth_depth_original.view(-1, w)
if custom_mask is not None:
custom_mask = custom_mask.view(-1, w)
# put to device
if use_gpu:
predicted_depth_original = predicted_depth_original.cuda()
ground_truth_depth_original = ground_truth_depth_original.cuda()
# Filter out depths greater than max_depth
if max_depth is not None:
mask = (ground_truth_depth_original > 0) & (ground_truth_depth_original < max_depth)
else:
mask = (ground_truth_depth_original > 0)
predicted_depth = predicted_depth_original[mask]
ground_truth_depth = ground_truth_depth_original[mask]
# Clip the depth values
if pre_clip_min is not None:
predicted_depth = torch.clamp(predicted_depth, min=pre_clip_min)
if pre_clip_max is not None:
predicted_depth = torch.clamp(predicted_depth, max=pre_clip_max)
if disp_input: # align the pred to gt in the disparity space
real_gt = ground_truth_depth.clone()
ground_truth_depth = 1 / (ground_truth_depth + 1e-8)
# various alignment methods
if align_with_lstsq:
# Convert to numpy for lstsq
predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1, 1)
ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1, 1)
# Add a column of ones for the shift term
A = np.hstack([predicted_depth_np, np.ones_like(predicted_depth_np)])
# Solve for scale (s) and shift (t) using least squares
result = np.linalg.lstsq(A, ground_truth_depth_np, rcond=None)
s, t = result[0][0], result[0][1]
# convert to torch tensor
s = torch.tensor(s, device=predicted_depth_original.device)
t = torch.tensor(t, device=predicted_depth_original.device)
# Apply scale and shift
predicted_depth = s * predicted_depth + t
elif align_with_lad:
s, t = absolute_value_scaling(predicted_depth, ground_truth_depth, s=torch.median(ground_truth_depth) / torch.median(predicted_depth))
predicted_depth = s * predicted_depth + t
elif align_with_lad2:
s_init = (torch.median(ground_truth_depth) / torch.median(predicted_depth)).item()
s, t = absolute_value_scaling2(predicted_depth, ground_truth_depth, s_init=s_init, lr=lr, max_iters=max_iters)
predicted_depth = s * predicted_depth + t
elif align_with_scale:
# Compute initial scale factor 's' using the closed-form solution (L2 norm)
dot_pred_gt = torch.nanmean(ground_truth_depth)
dot_pred_pred = torch.nanmean(predicted_depth)
s = dot_pred_gt / dot_pred_pred
# Iterative reweighted least squares using the Weiszfeld method
for _ in range(10):
# Compute residuals between scaled predictions and ground truth
residuals = s * predicted_depth - ground_truth_depth
abs_residuals = residuals.abs() + 1e-8 # Add small constant to avoid division by zero
# Compute weights inversely proportional to the residuals
weights = 1.0 / abs_residuals
# Update 's' using weighted sums
weighted_dot_pred_gt = torch.sum(weights * predicted_depth * ground_truth_depth)
weighted_dot_pred_pred = torch.sum(weights * predicted_depth ** 2)
s = weighted_dot_pred_gt / weighted_dot_pred_pred
# Optionally clip 's' to prevent extreme scaling
s = s.clamp(min=1e-3)
# Detach 's' if you want to stop gradients from flowing through it
s = s.detach()
# Apply the scale factor to the predicted depth
predicted_depth = s * predicted_depth
else:
# Align the predicted depth with the ground truth using median scaling
scale_factor = torch.median(ground_truth_depth) / torch.median(predicted_depth)
predicted_depth *= scale_factor
if disp_input:
# convert back to depth
ground_truth_depth = real_gt
predicted_depth = depth2disparity(predicted_depth)
# Clip the predicted depth values
if post_clip_min is not None:
predicted_depth = torch.clamp(predicted_depth, min=post_clip_min)
if post_clip_max is not None:
predicted_depth = torch.clamp(predicted_depth, max=post_clip_max)
if custom_mask is not None:
assert custom_mask.shape == ground_truth_depth_original.shape
mask_within_mask = custom_mask.cpu()[mask]
predicted_depth = predicted_depth[mask_within_mask]
ground_truth_depth = ground_truth_depth[mask_within_mask]
# Calculate the metrics
abs_rel = torch.mean(torch.abs(predicted_depth - ground_truth_depth) / ground_truth_depth).item()
sq_rel = torch.mean(((predicted_depth - ground_truth_depth) ** 2) / ground_truth_depth).item()
# Correct RMSE calculation
rmse = torch.sqrt(torch.mean((predicted_depth - ground_truth_depth) ** 2)).item()
# Clip the depth values to avoid log(0)
predicted_depth = torch.clamp(predicted_depth, min=1e-5)
log_rmse = torch.sqrt(torch.mean((torch.log(predicted_depth) - torch.log(ground_truth_depth)) ** 2)).item()
# Calculate the accuracy thresholds
max_ratio = torch.maximum(predicted_depth / ground_truth_depth, ground_truth_depth / predicted_depth)
threshold_1 = torch.mean((max_ratio < 1.25).float()).item()
threshold_2 = torch.mean((max_ratio < 1.25 ** 2).float()).item()
threshold_3 = torch.mean((max_ratio < 1.25 ** 3).float()).item()
# Compute the depth error parity map
if align_with_lstsq or align_with_lad or align_with_lad2:
predicted_depth_original = predicted_depth_original * s + t
if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
elif align_with_scale:
predicted_depth_original = predicted_depth_original * s
if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
else:
predicted_depth_original = predicted_depth_original * scale_factor
if disp_input: predicted_depth_original = depth2disparity(predicted_depth_original)
depth_error_parity_map = torch.abs(predicted_depth_original - ground_truth_depth_original) / ground_truth_depth_original
# Reshape the depth_error_parity_map back to the original image size
depth_error_parity_map_full = torch.zeros_like(ground_truth_depth_original)
depth_error_parity_map_full = torch.where(mask, depth_error_parity_map, depth_error_parity_map_full)
predict_depth_map_full = predicted_depth_original
gt_depth_map_full = torch.zeros_like(ground_truth_depth_original)
gt_depth_map_full = torch.where(mask, ground_truth_depth_original, gt_depth_map_full)
num_valid_pixels = torch.sum(mask).item() if custom_mask is None else torch.sum(mask_within_mask).item()
if num_valid_pixels == 0:
abs_rel, sq_rel, rmse, log_rmse, threshold_1, threshold_2, threshold_3 = 0, 0, 0, 0, 0, 0, 0
results = {
'Abs Rel': abs_rel,
'Sq Rel': sq_rel,
'RMSE': rmse,
'Log RMSE': log_rmse,
'δ < 1.25': threshold_1,
'δ < 1.25^2': threshold_2,
'δ < 1.25^3': threshold_3,
'valid_pixels': num_valid_pixels
}
return results, depth_error_parity_map_full, predict_depth_map_full, gt_depth_map_full
|