File size: 6,338 Bytes
4f6b78d 60fd7ba 4f6b78d 60fd7ba 4f6b78d 60fd7ba 4f6b78d 60fd7ba 4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import sys
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render_test as render
import torchvision
from utils_das3r.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils_das3r.pose_utils import get_tensor_from_camera
from utils_das3r.camera_utils import generate_interpolated_path
from utils_das3r.camera_utils import visualizer
import cv2
import numpy as np
import imageio
def save_interpolate_pose(model_path, iter, n_views=0):
org_pose = np.load(model_path + f"pose/pose_{iter}.npy")
visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png")
# n_interp = int(10 * 30 / n_views) # 10second, fps=30
# all_inter_pose = []
# for i in range(n_views-1):
# tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp)
# all_inter_pose.append(tmp_inter_pose)
# all_inter_pose = np.array(all_inter_pose).reshape(-1, 3, 4)
all_inter_pose = org_pose
inter_pose_list = []
for p in all_inter_pose:
tmp_view = np.eye(4)
tmp_view[:3, :3] = p[:3, :3]
tmp_view[:3, 3] = p[:3, 3]
inter_pose_list.append(tmp_view)
inter_pose = np.stack(inter_pose_list, 0)
visualizer(inter_pose, ["blue" for _ in inter_pose], model_path + "pose/poses_interpolated.png")
np.save(model_path + "pose/pose_interpolated.npy", inter_pose)
def images_to_video(image_folder, output_video_path, fps=30):
"""
Convert images in a folder to a video.
Args:
- image_folder (str): The path to the folder containing the images.
- output_video_path (str): The path where the output video will be saved.
- fps (int): Frames per second for the output video.
"""
images = []
for filename in sorted(os.listdir(image_folder)):
if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')):
image_path = os.path.join(image_folder, filename)
image = imageio.imread(image_path)
images.append(image)
imageio.mimwrite(output_video_path, images, fps=fps)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
rendering = render(
view, gaussians, pipeline, background, camera_pose=camera_pose
)["render"]
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
)
def render_sets(
dataset: ModelParams,
iteration: int,
pipeline: PipelineParams,
skip_train: bool,
skip_test: bool,
args,
):
# Applying interpolation
# save_interpolate_pose(dataset.model_path, iteration, args.n_views)
save_interpolate_pose(dataset.model_path, iteration)
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# render interpolated views
render_set(
dataset.model_path,
"interp",
scene.loaded_iter,
scene.getTrainCameras(),
gaussians,
pipeline,
background,
)
if args.get_video:
image_folder = os.path.join(dataset.model_path, f'interp/ours_{args.iteration}/renders')
output_video_file = os.path.join(dataset.model_path, f'rendered.mp4')
images_to_video(image_folder, output_video_file, fps=15)
def main(s, m, iter, get_video):
# Set up command line argument parser
parser = ArgumentParser(description="script parameters")
lp = ModelParams(parser)
pp = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--n_views", default=None, type=int)
parser.add_argument("--scene", default=None, type=str)
args = parser.parse_args(sys.argv[1:])
args.source_path = s
args.model_path = m
args.iteration = iter
args.get_video = get_video
# Initialize system state (RNG)
# safe_state(args.quiet)
args.eval = False
render_sets(
lp.extract(args),
args.iteration,
pp.extract(args),
args.skip_train,
args.skip_test,
args,
)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--n_views", default=None, type=int)
parser.add_argument("--scene", default=None, type=str)
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
# safe_state(args.quiet)
args.eval = False
render_sets(
model.extract(args),
args.iteration,
pipeline.extract(args),
args.skip_train,
args.skip_test,
args,
)
|