File size: 9,690 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# --------------------------------------------------------
# utilities needed for the inference
# --------------------------------------------------------
import tqdm
import torch
from dust3r.utils.device import to_cpu, collate_with_cat
from dust3r.utils.misc import invalid_to_nans
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
import numpy as np
import torch
from PIL import Image
def _interleave_imgs(img1, img2):
res = {}
for key, value1 in img1.items():
value2 = img2[key]
if isinstance(value1, torch.Tensor) and value1.ndim == value2.ndim:
value = torch.stack((value1, value2), dim=1).flatten(0, 1)
else:
value = [x for pair in zip(value1, value2) for x in pair]
res[key] = value
return res
def make_batch_symmetric(batch):
view1, view2 = batch
view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
return view1, view2
def mask_to_color(mask):
colors = np.zeros((*mask.shape, 3))
colors[:,:,0] = mask.cpu().detach() # Green channel weighted by mmask
return colors
def visualize_results_mmask(view1, view2, pred1, pred2, save_dir='./tmp', save_name=None, visualize_type='gt'):
# visualize_type: 'gt' or 'pred'
viz1 = SceneViz()
viz2 = SceneViz()
viz = [viz1, viz2]
views = [view1, view2]
poses = [views[view_idx]['camera_pose'][0] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.5)
if visualize_type == 'pred':
cam_size *= 0.1
views[0]['pts3d'] = geotrf(poses[0], pred1['pts3d']) # convert from X_camera1 to X_world
views[1]['pts3d'] = geotrf(poses[0], pred2['pts3d_in_other_view'])
mmask = [pred1['dynamic_mask'], pred2['dynamic_mask']]
else:
mmask = [view1['dynamic_mask'], view2['dynamic_mask']]
images = []
save_paths = []
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d'][0]
valid_mask = views[view_idx]['valid_mask'][0]
colors = rgb(views[view_idx]['img'][0])
alpha = 0.5 # You can adjust the alpha value as needed
mmask_color = mask_to_color(mmask[view_idx][0])
colors = alpha * colors + (1 - alpha) * mmask_color
images.append(colors)
# viz[view_idx].add_pointcloud(pts3d, colors, valid_mask)
# # viz.add_camera(pose_c2w=views[view_idx]['camera_pose'][0],
# # focal=views[view_idx]['camera_intrinsics'][0, 0],
# # color=(255, 0, 0),
# # image=colors,
# # cam_size=cam_size)
save_name = f'{views[0]["dataset"][0]}_{views[0]["label"][0]}_{views[0]["instance"][0]}_{views[1]["instance"][0]}_{visualize_type}_{view_idx}'
# save_path = save_dir+'/'+save_name+'_mmask.glb'
# # print(f'Saving visualization to {save_path}')
# viz[view_idx].save_glb(save_path)
# save_paths.append(save_path)
# Save the RGB image multiplied by 255 to a file
rgb_image = (colors * 255).astype(np.uint8)
img = Image.fromarray(rgb_image)
img.save(save_dir+'/'+save_name+'_mmask.png')
return images[0], images[1]
def visualize_results(view1, view2, pred1, pred2, save_dir='./tmp', save_name=None, visualize_type='gt'):
# visualize_type: 'gt' or 'pred'
viz1 = SceneViz()
viz2 = SceneViz()
viz = [viz1, viz2]
views = [view1, view2]
poses = [views[view_idx]['camera_pose'][0] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.5)
if visualize_type == 'pred':
cam_size *= 0.1
views[0]['pts3d'] = geotrf(poses[0], pred1['pts3d']) # convert from X_camera1 to X_world
views[1]['pts3d'] = geotrf(poses[0], pred2['pts3d_in_other_view'])
save_paths = []
images = []
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d'][0]
valid_mask = views[view_idx]['valid_mask'][0]
colors = rgb(views[view_idx]['img'][0])
images.append(colors)
# viz[view_idx].add_pointcloud(pts3d, colors, valid_mask)
# viz[view_idx].add_camera(pose_c2w=views[view_idx]['camera_pose'][0],
# focal=views[view_idx]['camera_intrinsics'][0, 0],
# color=(255, 0, 0),
# image=colors,
# cam_size=cam_size)
if save_name is None:
save_name = f'{views[0]["dataset"][0]}_{views[0]["label"][0]}_{views[0]["instance"][0]}_{views[1]["instance"][0]}_{visualize_type}_{view_idx}'
# save_path = save_dir+'/'+save_name+'.glb'
# # print(f'Saving visualization to {save_path}')
# viz[view_idx].save_glb(save_path)
# save_paths.append(save_path)
# Save the RGB image multiplied by 255 to a file
rgb_image = (colors * 255).astype(np.uint8)
img = Image.fromarray(rgb_image)
img.save(save_dir+'/'+save_name+'.png')
return images[0], images[1]
def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None):
view1, view2 = batch
ignore_keys = set(['depthmap', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'rng'])
for view in batch:
for name in view.keys(): # pseudo_focal
if name in ignore_keys:
continue
view[name] = view[name].to(device, non_blocking=True)
if symmetrize_batch:
view1, view2 = make_batch_symmetric(batch)
with torch.amp.autocast(enabled=bool(use_amp), device_type="cuda"):
# Export the model
pred1, pred2 = model(view1, view2)
# loss is supposed to be symmetric
with torch.amp.autocast(enabled=False, device_type="cuda"):
loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss)
return result[ret] if ret else result
@torch.no_grad()
def inference(pairs, model, device, batch_size=8, verbose=True):
if verbose:
print(f'>> Inference with model on {len(pairs)} image pairs')
result = []
# first, check if all images have the same size
multiple_shapes = not (check_if_same_size(pairs))
if multiple_shapes: # force bs=1
batch_size = 1
for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose):
res = loss_of_one_batch(collate_with_cat(pairs[i:i+batch_size]), model, None, device)
result.append(to_cpu(res))
result = collate_with_cat(result, lists=multiple_shapes)
return result
def check_if_same_size(pairs):
shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs]
shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs]
return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2)
def get_pred_pts3d(gt, pred, use_pose=False):
if 'depth' in pred and 'pseudo_focal' in pred:
try:
pp = gt['camera_intrinsics'][..., :2, 2]
except KeyError:
pp = None
pts3d = depthmap_to_pts3d(**pred, pp=pp)
elif 'pts3d' in pred:
# pts3d from my camera
pts3d = pred['pts3d']
elif 'pts3d_in_other_view' in pred:
# pts3d from the other camera, already transformed
assert use_pose is True
return pred['pts3d_in_other_view'] # return!
if use_pose:
camera_pose = pred.get('camera_pose')
assert camera_pose is not None
pts3d = geotrf(camera_pose, pts3d)
return pts3d
def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None):
assert gt_pts1.ndim == pr_pts1.ndim == 4
assert gt_pts1.shape == pr_pts1.shape
if gt_pts2 is not None:
assert gt_pts2.ndim == pr_pts2.ndim == 4
assert gt_pts2.shape == pr_pts2.shape
# concat the pointcloud
nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None
pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None
all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1
all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1
dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
dot_gt_gt = all_gt.square().sum(dim=-1)
if fit_mode.startswith('avg'):
# scaling = (all_pr / all_gt).view(B, -1).mean(dim=1)
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
elif fit_mode.startswith('median'):
scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
elif fit_mode.startswith('weiszfeld'):
# init scaling with l2 closed form
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
# iterative re-weighted least-squares
for iter in range(10):
# re-weighting by inverse of distance
dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)
# print(dis.nanmean(-1))
w = dis.clip_(min=1e-8).reciprocal()
# update the scaling with the new weights
scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
else:
raise ValueError(f'bad {fit_mode=}')
if fit_mode.endswith('stop_grad'):
scaling = scaling.detach()
scaling = scaling.clip(min=1e-3)
# assert scaling.isfinite().all(), bb()
return scaling
|