File size: 11,579 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
from torch._C import dtype, set_flush_denormal
import dust3r.utils.po_utils.basic
import dust3r.utils.po_utils.improc
from dust3r.utils.po_utils.misc import farthest_point_sample_py
from dust3r.utils.po_utils.geom import apply_4x4_py, apply_pix_T_cam_py
import glob
import cv2
from torchvision.transforms import ColorJitter, GaussianBlur
from functools import partial
import json

from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2
from dust3r.utils.misc import get_stride_distribution

np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')


def convert_ndc_to_pixel_intrinsics(
    focal_length_ndc, principal_point_ndc, image_width, image_height, intrinsics_format='ndc_isotropic'
):
    f_x_ndc, f_y_ndc = focal_length_ndc
    c_x_ndc, c_y_ndc = principal_point_ndc

    # Compute half image size
    half_image_size_wh_orig = np.array([image_width, image_height]) / 2.0

    # Determine rescale factor based on intrinsics_format
    if intrinsics_format.lower() == "ndc_norm_image_bounds":
        rescale = half_image_size_wh_orig  # [image_width/2, image_height/2]
    elif intrinsics_format.lower() == "ndc_isotropic":
        rescale = np.min(half_image_size_wh_orig)  # scalar value
    else:
        raise ValueError(f"Unknown intrinsics format: {intrinsics_format}")

    # Convert focal length from NDC to pixel coordinates
    if intrinsics_format.lower() == "ndc_norm_image_bounds":
        focal_length_px = np.array([f_x_ndc, f_y_ndc]) * rescale
    elif intrinsics_format.lower() == "ndc_isotropic":
        focal_length_px = np.array([f_x_ndc, f_y_ndc]) * rescale

    # Convert principal point from NDC to pixel coordinates
    principal_point_px = half_image_size_wh_orig - np.array([c_x_ndc, c_y_ndc]) * rescale

    # Construct the intrinsics matrix in pixel coordinates
    K_pixel = np.array([
        [focal_length_px[0], 0,                principal_point_px[0]],
        [0,                 focal_length_px[1], principal_point_px[1]],
        [0,                 0,                 1]
    ])

    return K_pixel

def load_16big_png_depth(depth_png):
        with Image.open(depth_png) as depth_pil:
            # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
            # we cast it to uint16, then reinterpret as float16, then cast to float32
            depth = (
                np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
                .astype(np.float32)
                .reshape((depth_pil.size[1], depth_pil.size[0]))
            )
        return depth

class DynamicReplicaDUSt3R(BaseStereoViewDataset):
    def __init__(self,
                 dataset_location='data/dynamic_replica',
                 use_augs=False,
                 S=2,
                 strides=[1,2,3,4,5,6,7,8,9],
                 clip_step=2,
                 quick=False,
                 verbose=False,
                 dist_type=None,
                 clip_step_last_skip = 0,
                 *args, 
                 **kwargs
                 ):

        print('loading pointodyssey dataset...')
        super().__init__(*args, **kwargs)
        self.dataset_label = 'pointodyssey'
        self.S = S # stride
        self.verbose = verbose

        self.use_augs = use_augs

        self.rgb_paths = []
        self.depth_paths = []
        self.normal_paths = []
        self.traj_paths = []
        self.annotation_paths = []
        self.full_idxs = []
        self.sample_stride = []
        self.strides = strides

        self.subdirs = []
        self.sequences = []
        self.subdirs.append(os.path.join(dataset_location))

        anno_path = os.path.join(dataset_location, 'frame_annotations_train.json')
        with open(anno_path, 'r') as f:
            self.anno = json.load(f)

        #organize anno by 'sequence_name'
        anno_by_seq = {}
        for a in self.anno:
            seq_name = a['sequence_name']
            if seq_name not in anno_by_seq:
                anno_by_seq[seq_name] = []
            anno_by_seq[seq_name].append(a)

        for subdir in self.subdirs:
            for seq in glob.glob(os.path.join(subdir, "*/")):
                seq_name = seq.split('/')[-1]
                self.sequences.append(seq)

        self.sequences = anno_by_seq.keys()
        if self.verbose:
            print(self.sequences)
        print('found %d unique videos in %s ' % (len(self.sequences), dataset_location))


        if quick:
           self.sequences = self.sequences[1:2] 
        
        for seq in self.sequences:
            if self.verbose: 
                print('seq', seq)

            anno = anno_by_seq[seq]
            

            for stride in strides:
                for ii in range(0,len(anno)-self.S*max(stride,clip_step_last_skip)+1, clip_step):
                    full_idx = ii + np.arange(self.S)*stride
                    self.rgb_paths.append([os.path.join(dataset_location, anno[idx]['image']['path']) for idx in full_idx])
                    self.depth_paths.append([os.path.join(dataset_location, anno[idx]['depth']['path']) for idx in full_idx])
                    # check if all paths are valid, if not, skip
                    if not all([os.path.exists(p) for p in self.rgb_paths[-1]]) or not all([os.path.exists(p) for p in self.depth_paths[-1]]):
                        self.rgb_paths.pop()
                        self.depth_paths.pop()
                        continue
                    self.annotation_paths.append([anno[idx]['viewpoint'] for idx in full_idx])
                    self.full_idxs.append(full_idx)
                    self.sample_stride.append(stride)
                if self.verbose:
                    sys.stdout.write('.')
                    sys.stdout.flush()

        
        self.stride_counts = {}
        self.stride_idxs = {}
        for stride in strides:
            self.stride_counts[stride] = 0
            self.stride_idxs[stride] = []
        for i, stride in enumerate(self.sample_stride):
            self.stride_counts[stride] += 1
            self.stride_idxs[stride].append(i)
        print('stride counts:', self.stride_counts)
        
        if len(strides) > 1 and dist_type is not None:
            self._resample_clips(strides, dist_type)

        print('collected %d clips of length %d in %s' % (
            len(self.rgb_paths), self.S, dataset_location,))

    def _resample_clips(self, strides, dist_type):

        # Get distribution of strides, and sample based on that
        dist = get_stride_distribution(strides, dist_type=dist_type)
        dist = dist / np.max(dist)
        max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
        num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
        print('resampled_num_clips_each_stride:', num_clips_each_stride)
        resampled_idxs = []
        for i, stride in enumerate(strides):
            resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()
        
        self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
        self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
        self.annotation_paths = [self.annotation_paths[i] for i in resampled_idxs]
        self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
        self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]

    def __len__(self):
        return len(self.rgb_paths)
    
    def _get_views(self, index, resolution, rng):

        rgb_paths = self.rgb_paths[index]
        depth_paths = self.depth_paths[index]
        full_idx = self.full_idxs[index]
        annotations = self.annotation_paths[index]
        focals = [np.array(annotations[i]['focal_length']).astype(np.float32) for i in range(2)]
        pp = [np.array(annotations[i]['principal_point']).astype(np.float32) for i in range(2)]
        intrinsics_format = [annotations[i]['intrinsics_format'] for i in range(2)]
        cams_T_world_R = [np.array(annotations[i]['R']).astype(np.float32) for i in range(2)]
        cams_T_world_t = [np.array(annotations[i]['T']).astype(np.float32) for i in range(2)]

        views = []
        for i in range(2):
            
            impath = rgb_paths[i]
            depthpath = depth_paths[i]

            # load camera params
            R = cams_T_world_R[i]
            t = cams_T_world_t[i]
            camera_pose = np.eye(4, dtype=np.float32)
            camera_pose[:3,:3] = R.T
            camera_pose[:3,3] = -R.T @ t

            # load image and depth
            rgb_image = imread_cv2(impath)
            depthmap = load_16big_png_depth(depthpath)

            # load intrinsics
            intrinsics = convert_ndc_to_pixel_intrinsics(focals[i], pp[i], rgb_image.shape[1], rgb_image.shape[0],
                                                         intrinsics_format=intrinsics_format[i])
            intrinsics = intrinsics.astype(np.float32)


            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)

            views.append(dict(
                img=rgb_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset=self.dataset_label,
                label=rgb_paths[i].split('/')[-3],
                instance=osp.split(rgb_paths[i])[1],
            ))
        return views
        

if __name__ == "__main__":
    from dust3r.datasets.base.base_stereo_view_dataset import view_name
    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb
    import gradio as gr
    import random

    use_augs = False
    S = 2
    strides = [1,2,3,4,5,6,7,8,9]
    clip_step = 2
    quick = False  # Set to True for quick testing

    def visualize_scene(idx):
        views = dataset[idx]
        assert len(views) == 2
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.25)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
            viz.add_pointcloud(pts3d, colors, valid_mask)
            viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
                        focal=views[view_idx]['camera_intrinsics'][0, 0],
                        color=(255, 0, 0),
                        image=colors,
                        cam_size=cam_size)
        os.makedirs('./tmp/replica', exist_ok=True)
        path = f"./tmp/replica/replica_scene_{idx}.glb"
        return viz.save_glb(path)

    dataset = DynamicReplicaDUSt3R(
        use_augs=use_augs,
        S=S,
        strides=strides,
        clip_step=clip_step,
        quick=quick,
        verbose=False,
        resolution=512, 
        aug_crop=16,
        dist_type='linear_1_9',
        aug_focal=1.0,
        z_far=80)

    idxs = np.arange(0, len(dataset)-1, (len(dataset)-1)//10)
    # idx = random.randint(0, len(dataset)-1)
    # idx = 0
    for idx in idxs:
        print(f"Visualizing scene {idx}...")
        visualize_scene(idx)