File size: 11,579 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
from torch._C import dtype, set_flush_denormal
import dust3r.utils.po_utils.basic
import dust3r.utils.po_utils.improc
from dust3r.utils.po_utils.misc import farthest_point_sample_py
from dust3r.utils.po_utils.geom import apply_4x4_py, apply_pix_T_cam_py
import glob
import cv2
from torchvision.transforms import ColorJitter, GaussianBlur
from functools import partial
import json
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2
from dust3r.utils.misc import get_stride_distribution
np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')
def convert_ndc_to_pixel_intrinsics(
focal_length_ndc, principal_point_ndc, image_width, image_height, intrinsics_format='ndc_isotropic'
):
f_x_ndc, f_y_ndc = focal_length_ndc
c_x_ndc, c_y_ndc = principal_point_ndc
# Compute half image size
half_image_size_wh_orig = np.array([image_width, image_height]) / 2.0
# Determine rescale factor based on intrinsics_format
if intrinsics_format.lower() == "ndc_norm_image_bounds":
rescale = half_image_size_wh_orig # [image_width/2, image_height/2]
elif intrinsics_format.lower() == "ndc_isotropic":
rescale = np.min(half_image_size_wh_orig) # scalar value
else:
raise ValueError(f"Unknown intrinsics format: {intrinsics_format}")
# Convert focal length from NDC to pixel coordinates
if intrinsics_format.lower() == "ndc_norm_image_bounds":
focal_length_px = np.array([f_x_ndc, f_y_ndc]) * rescale
elif intrinsics_format.lower() == "ndc_isotropic":
focal_length_px = np.array([f_x_ndc, f_y_ndc]) * rescale
# Convert principal point from NDC to pixel coordinates
principal_point_px = half_image_size_wh_orig - np.array([c_x_ndc, c_y_ndc]) * rescale
# Construct the intrinsics matrix in pixel coordinates
K_pixel = np.array([
[focal_length_px[0], 0, principal_point_px[0]],
[0, focal_length_px[1], principal_point_px[1]],
[0, 0, 1]
])
return K_pixel
def load_16big_png_depth(depth_png):
with Image.open(depth_png) as depth_pil:
# the image is stored with 16-bit depth but PIL reads it as I (32 bit).
# we cast it to uint16, then reinterpret as float16, then cast to float32
depth = (
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0]))
)
return depth
class DynamicReplicaDUSt3R(BaseStereoViewDataset):
def __init__(self,
dataset_location='data/dynamic_replica',
use_augs=False,
S=2,
strides=[1,2,3,4,5,6,7,8,9],
clip_step=2,
quick=False,
verbose=False,
dist_type=None,
clip_step_last_skip = 0,
*args,
**kwargs
):
print('loading pointodyssey dataset...')
super().__init__(*args, **kwargs)
self.dataset_label = 'pointodyssey'
self.S = S # stride
self.verbose = verbose
self.use_augs = use_augs
self.rgb_paths = []
self.depth_paths = []
self.normal_paths = []
self.traj_paths = []
self.annotation_paths = []
self.full_idxs = []
self.sample_stride = []
self.strides = strides
self.subdirs = []
self.sequences = []
self.subdirs.append(os.path.join(dataset_location))
anno_path = os.path.join(dataset_location, 'frame_annotations_train.json')
with open(anno_path, 'r') as f:
self.anno = json.load(f)
#organize anno by 'sequence_name'
anno_by_seq = {}
for a in self.anno:
seq_name = a['sequence_name']
if seq_name not in anno_by_seq:
anno_by_seq[seq_name] = []
anno_by_seq[seq_name].append(a)
for subdir in self.subdirs:
for seq in glob.glob(os.path.join(subdir, "*/")):
seq_name = seq.split('/')[-1]
self.sequences.append(seq)
self.sequences = anno_by_seq.keys()
if self.verbose:
print(self.sequences)
print('found %d unique videos in %s ' % (len(self.sequences), dataset_location))
if quick:
self.sequences = self.sequences[1:2]
for seq in self.sequences:
if self.verbose:
print('seq', seq)
anno = anno_by_seq[seq]
for stride in strides:
for ii in range(0,len(anno)-self.S*max(stride,clip_step_last_skip)+1, clip_step):
full_idx = ii + np.arange(self.S)*stride
self.rgb_paths.append([os.path.join(dataset_location, anno[idx]['image']['path']) for idx in full_idx])
self.depth_paths.append([os.path.join(dataset_location, anno[idx]['depth']['path']) for idx in full_idx])
# check if all paths are valid, if not, skip
if not all([os.path.exists(p) for p in self.rgb_paths[-1]]) or not all([os.path.exists(p) for p in self.depth_paths[-1]]):
self.rgb_paths.pop()
self.depth_paths.pop()
continue
self.annotation_paths.append([anno[idx]['viewpoint'] for idx in full_idx])
self.full_idxs.append(full_idx)
self.sample_stride.append(stride)
if self.verbose:
sys.stdout.write('.')
sys.stdout.flush()
self.stride_counts = {}
self.stride_idxs = {}
for stride in strides:
self.stride_counts[stride] = 0
self.stride_idxs[stride] = []
for i, stride in enumerate(self.sample_stride):
self.stride_counts[stride] += 1
self.stride_idxs[stride].append(i)
print('stride counts:', self.stride_counts)
if len(strides) > 1 and dist_type is not None:
self._resample_clips(strides, dist_type)
print('collected %d clips of length %d in %s' % (
len(self.rgb_paths), self.S, dataset_location,))
def _resample_clips(self, strides, dist_type):
# Get distribution of strides, and sample based on that
dist = get_stride_distribution(strides, dist_type=dist_type)
dist = dist / np.max(dist)
max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
print('resampled_num_clips_each_stride:', num_clips_each_stride)
resampled_idxs = []
for i, stride in enumerate(strides):
resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()
self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
self.annotation_paths = [self.annotation_paths[i] for i in resampled_idxs]
self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]
def __len__(self):
return len(self.rgb_paths)
def _get_views(self, index, resolution, rng):
rgb_paths = self.rgb_paths[index]
depth_paths = self.depth_paths[index]
full_idx = self.full_idxs[index]
annotations = self.annotation_paths[index]
focals = [np.array(annotations[i]['focal_length']).astype(np.float32) for i in range(2)]
pp = [np.array(annotations[i]['principal_point']).astype(np.float32) for i in range(2)]
intrinsics_format = [annotations[i]['intrinsics_format'] for i in range(2)]
cams_T_world_R = [np.array(annotations[i]['R']).astype(np.float32) for i in range(2)]
cams_T_world_t = [np.array(annotations[i]['T']).astype(np.float32) for i in range(2)]
views = []
for i in range(2):
impath = rgb_paths[i]
depthpath = depth_paths[i]
# load camera params
R = cams_T_world_R[i]
t = cams_T_world_t[i]
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3,:3] = R.T
camera_pose[:3,3] = -R.T @ t
# load image and depth
rgb_image = imread_cv2(impath)
depthmap = load_16big_png_depth(depthpath)
# load intrinsics
intrinsics = convert_ndc_to_pixel_intrinsics(focals[i], pp[i], rgb_image.shape[1], rgb_image.shape[0],
intrinsics_format=intrinsics_format[i])
intrinsics = intrinsics.astype(np.float32)
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset=self.dataset_label,
label=rgb_paths[i].split('/')[-3],
instance=osp.split(rgb_paths[i])[1],
))
return views
if __name__ == "__main__":
from dust3r.datasets.base.base_stereo_view_dataset import view_name
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
import gradio as gr
import random
use_augs = False
S = 2
strides = [1,2,3,4,5,6,7,8,9]
clip_step = 2
quick = False # Set to True for quick testing
def visualize_scene(idx):
views = dataset[idx]
assert len(views) == 2
viz = SceneViz()
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.25)
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d']
valid_mask = views[view_idx]['valid_mask']
colors = rgb(views[view_idx]['img'])
viz.add_pointcloud(pts3d, colors, valid_mask)
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
focal=views[view_idx]['camera_intrinsics'][0, 0],
color=(255, 0, 0),
image=colors,
cam_size=cam_size)
os.makedirs('./tmp/replica', exist_ok=True)
path = f"./tmp/replica/replica_scene_{idx}.glb"
return viz.save_glb(path)
dataset = DynamicReplicaDUSt3R(
use_augs=use_augs,
S=S,
strides=strides,
clip_step=clip_step,
quick=quick,
verbose=False,
resolution=512,
aug_crop=16,
dist_type='linear_1_9',
aug_focal=1.0,
z_far=80)
idxs = np.arange(0, len(dataset)-1, (len(dataset)-1)//10)
# idx = random.randint(0, len(dataset)-1)
# idx = 0
for idx in idxs:
print(f"Visualizing scene {idx}...")
visualize_scene(idx)
|