File size: 20,008 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
from torch._C import dtype, set_flush_denormal
import dust3r.utils.po_utils.basic
import dust3r.utils.po_utils.improc
from dust3r.utils.po_utils.misc import farthest_point_sample_py
from dust3r.utils.po_utils.geom import apply_4x4_py, apply_pix_T_cam_py
import glob
import cv2
from torchvision.transforms import ColorJitter, GaussianBlur
from functools import partial
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset, is_good_type, transpose_to_landscape
from dust3r.utils.image import imread_cv2
from dust3r.utils.misc import get_stride_distribution
from dust3r.datasets.utils.geom import apply_4x4_py, realative_T_py
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from pyntcloud import PyntCloud
import pandas as pd
np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')
class PointOdysseyDUSt3R(BaseStereoViewDataset):
def __init__(self,
dataset_location='data/pointodyssey',
dset='train',
use_augs=False,
S=2,
N=16,
strides=[1,2,3,4,5,6,7,8,9],
clip_step=2,
quick=False,
verbose=False,
dist_type=None,
clip_step_last_skip = 0,
motion_thresh = 1e-6,
*args,
**kwargs
):
print('loading pointodyssey dataset...')
super().__init__(*args, **kwargs)
self.dataset_label = 'pointodyssey'
self.split = dset
self.S = S # stride
self.N = N # min num points
self.verbose = verbose
self.motion_thresh = motion_thresh
self.use_augs = use_augs
self.dset = dset
self.rgb_paths = []
self.depth_paths = []
self.normal_paths = []
self.traj_2d_paths = []
self.traj_3d_paths = []
self.extrinsic_paths = []
self.intrinsic_paths = []
self.masks_paths = []
self.valids_paths = []
self.visibs_paths = []
self.annotation_paths = []
self.full_idxs = []
self.sample_stride = []
self.strides = strides
self.subdirs = []
self.sequences = []
self.subdirs.append(os.path.join(dataset_location, dset))
for subdir in self.subdirs:
for seq in glob.glob(os.path.join(subdir, "*/")):
seq_name = seq.split('/')[-1]
self.sequences.append(seq)
self.sequences = sorted(self.sequences)
if quick:
self.sequences = self.sequences[1:2]
if self.verbose:
print(self.sequences)
print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset))
## load trajectories
print('loading trajectories...')
for seq in self.sequences:
if self.verbose:
print('seq', seq)
rgb_path = os.path.join(seq, 'rgbs')
info_path = os.path.join(seq, 'info.npz')
annotations_path = os.path.join(seq, 'anno.npz')
if os.path.isfile(info_path) and os.path.isfile(annotations_path):
traj_3d_files = glob.glob(os.path.join(seq, 'trajs_3d', '*.npy'))
if len(traj_3d_files):
traj_3d_files_0 = np.load(traj_3d_files[0], allow_pickle=True)
trajs_3d_shape = traj_3d_files_0.shape[0]
else:
trajs_3d_shape = 0
if len(traj_3d_files) and trajs_3d_shape > self.N:
for stride in strides:
for ii in range(0,len(os.listdir(rgb_path))-self.S*max(stride,clip_step_last_skip)+1, clip_step):
full_idx = ii + np.arange(self.S)*stride
self.rgb_paths.append([os.path.join(seq, 'rgbs', 'rgb_%05d.jpg' % idx) for idx in full_idx])
self.depth_paths.append([os.path.join(seq, 'depths', 'depth_%05d.png' % idx) for idx in full_idx])
self.normal_paths.append([os.path.join(seq, 'normals', 'normal_%05d.jpg' % idx) for idx in full_idx])
# self.traj_2d_paths.append([os.path.join(seq, 'trajs_2d', 'traj_2d_%05d.npy' % idx) for idx in full_idx])
self.traj_3d_paths.append([os.path.join(seq, 'trajs_3d', 'traj_3d_%05d.npy' % idx) for idx in full_idx])
self.extrinsic_paths.append([os.path.join(seq, 'extrinsics', 'extrinsic_%05d.npy' % idx) for idx in full_idx])
self.intrinsic_paths.append([os.path.join(seq, 'intrinsics', 'intrinsic_%05d.npy' % idx) for idx in full_idx])
self.masks_paths.append([os.path.join(seq, 'masks', 'mask_%05d.png' % idx) for idx in full_idx])
self.valids_paths.append([os.path.join(seq, 'valids', 'valid_%05d.npy' % idx) for idx in full_idx])
self.visibs_paths.append([os.path.join(seq, 'visibs', 'visib_%05d.npy' % idx) for idx in full_idx])
self.full_idxs.append(full_idx)
self.sample_stride.append(stride)
if self.verbose:
sys.stdout.write('.')
sys.stdout.flush()
elif self.verbose:
print('rejecting seq for missing 3d')
elif self.verbose:
print('rejecting seq for missing info or anno')
self.stride_counts = {}
self.stride_idxs = {}
for stride in strides:
self.stride_counts[stride] = 0
self.stride_idxs[stride] = []
for i, stride in enumerate(self.sample_stride):
self.stride_counts[stride] += 1
self.stride_idxs[stride].append(i)
print('stride counts:', self.stride_counts)
if len(strides) > 1 and dist_type is not None:
self._resample_clips(strides, dist_type)
print('collected %d clips of length %d in %s (dset=%s)' % (
len(self.rgb_paths), self.S, dataset_location, dset))
def _resample_clips(self, strides, dist_type):
# Get distribution of strides, and sample based on that
dist = get_stride_distribution(strides, dist_type=dist_type)
dist = dist / np.max(dist)
max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
print('resampled_num_clips_each_stride:', num_clips_each_stride)
resampled_idxs = []
for i, stride in enumerate(strides):
resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()
self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
self.normal_paths = [self.normal_paths[i] for i in resampled_idxs]
# self.traj_2d_paths = [self.traj_2d_paths[i] for i in resampled_idxs]
self.traj_3d_paths = [self.traj_3d_paths[i] for i in resampled_idxs]
self.extrinsic_paths = [self.extrinsic_paths[i] for i in resampled_idxs]
self.intrinsic_paths = [self.intrinsic_paths[i] for i in resampled_idxs]
self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]
self.masks_paths = [self.masks_paths[i] for i in resampled_idxs]
self.valids_paths = [self.valids_paths[i] for i in resampled_idxs]
self.visibs_paths = [self.visibs_paths[i] for i in resampled_idxs]
def __len__(self):
return len(self.rgb_paths)
def _get_views(self, index, resolution, rng):
rgb_paths = self.rgb_paths[index]
depth_paths = self.depth_paths[index]
# normal_paths = self.normal_paths[index]
traj_3d_paths = self.traj_3d_paths[index]
extrinsic_paths = self.extrinsic_paths[index]
intrinsic_paths = self.intrinsic_paths[index]
masks_paths = self.masks_paths[index]
valids_paths = self.valids_paths[index]
visibs_paths = self.visibs_paths[index]
# full_idx = self.full_idxs[index]
traj_3d = [np.load(traj_3d_path, allow_pickle=True) for traj_3d_path in traj_3d_paths]
pix_T_cams = [np.load(intrinsic_path, allow_pickle=True) for intrinsic_path in intrinsic_paths]
cams_T_world = [np.load(extrinsic_path, allow_pickle=True) for extrinsic_path in extrinsic_paths]
# motion_vector = traj_3d[0] - traj_3d[1]
# motion_vector_norm = np.linalg.norm(motion_vector, axis=-1)
# motion_mask_3d = motion_vector_norm > self.motion_thresh
motion_mask_3d = (traj_3d[0]==traj_3d[1]).sum(axis=1)!=3
# # Project motion_mask_3d to camera space
# traj_3d_cam_space = apply_4x4_py(cams_T_world[0], traj_3d[0])
# motion_mask_3d_cam_space = apply_pix_T_cam_py(pix_T_cams[0], traj_3d_cam_space)
# rgb_image = imread_cv2(rgb_paths[0])
# rgb_image2 = imread_cv2(rgb_paths[1])
# height, width, _ = rgb_image.shape
# # Filter motion_mask_3d_cam_space to be within image boundaries
# motion_mask_3d_cam_space = np.round(motion_mask_3d_cam_space).astype(int)
# x, y = motion_mask_3d_cam_space[:, 0], motion_mask_3d_cam_space[:, 1]
# valid_mask = (x >= 0) & (x < width) & (y >= 0) & (y < height) & valid_mask & visib_mask
# motion_mask_3d_cam_space = motion_mask_3d_cam_space[valid_mask]
# motion_mask = np.zeros_like(rgb_image, dtype=np.float32)
# motion_mask[motion_mask_3d_cam_space[:, 1], motion_mask_3d_cam_space[:, 0]] = [255, 255, 255]
# # Save the RGB image and motion mask
# rgb_image_path = os.path.join('tmp', '%05d_rgb.jpg' % index)
# motion_mask_path = os.path.join('tmp', '%05d_motion_mask.png' % index)
# sem_path = os.path.join('tmp', '%05d_sem.png' % index)
# rgb_image2_path = os.path.join('tmp', '%05d_rgb2.jpg' % index)
# cv2.imwrite(rgb_image_path, rgb_image)
# cv2.imwrite(motion_mask_path, motion_mask)
# cv2.imwrite(sem_path, sem_mask)
# cv2.imwrite(rgb_image2_path, rgb_image2)
# print(rgb_image_path)
# print(motion_mask_path)
# print(sem_path)
# print(rgb_image2_path)
# # Create a DataFrame for the point cloud
# points = traj_3d[0]
# colors = np.zeros_like(points)
# colors[motion_mask_3d] = [255, 0, 0] # Red for motion points
# colors[~motion_mask_3d] = [0, 0, 0] # Green for static points
# point_cloud_df = pd.DataFrame(
# np.hstack((points, colors)),
# columns=["x", "y", "z", "red", "green", "blue"]
# )
# # Create a PyntCloud object
# point_cloud = PyntCloud(point_cloud_df)
# point_cloud.plot()
# try ten samples to see if the motion mask is correct.
views = []
for i in range(2):
impath = rgb_paths[i]
depthpath = depth_paths[i]
# masks_path = masks_paths[i]
# valids_path = valids_paths[i]
# visibs_path = visibs_paths[i]
# load camera params
extrinsics = cams_T_world[i]
R = extrinsics[:3,:3]
t = extrinsics[:3,3]
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3,:3] = R.T
camera_pose[:3,3] = -R.T @ t
intrinsics = pix_T_cams[i]
# load image and depth
rgb_image = imread_cv2(impath)
# masks_image = imread_cv2(masks_path)
depth16 = cv2.imread(depthpath, cv2.IMREAD_ANYDEPTH)
depthmap = depth16.astype(np.float32) / 65535.0 * 1000.0 # 1000 is the max depth in the dataset
# masks_image, _, _ = self._crop_resize_if_necessary(
# masks_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
views.append(dict(
img=rgb_image,
# mask=masks_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset=self.dataset_label,
label=rgb_paths[i].split('/')[-3],
instance=osp.split(rgb_paths[i])[1],
))
return views, motion_mask_3d, traj_3d
def __getitem__(self, idx):
if isinstance(idx, tuple):
# the idx is specifying the aspect-ratio
idx, ar_idx = idx
else:
assert len(self._resolutions) == 1
ar_idx = 0
# set-up the rng
if self.seed: # reseed for each __getitem__
self._rng = np.random.default_rng(seed=self.seed + idx)
elif not hasattr(self, '_rng'):
seed = torch.initial_seed() # this is different for each dataloader process
self._rng = np.random.default_rng(seed=seed)
# over-loaded code
resolution = self._resolutions[ar_idx] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler)
views, motion_mask_3d, traj_3d = self._get_views(idx, resolution, self._rng)
assert len(views) == self.num_views
# check data-types
# img = []
# mask = []
# mmask_save = []
for v, view in enumerate(views):
assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}"
view['idx'] = (idx, ar_idx, v)
# img.append(np.array(view['img']))
# mask.append(np.array(view['mask']))
# encode the image
width, height = view['img'].size
view['true_shape'] = np.int32((height, width))
view['img'] = self.transform(view['img'])
# view['mask'] = self.transform(view['mask'])
assert 'camera_intrinsics' in view
if 'camera_pose' not in view:
view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32)
else:
assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}'
assert 'pts3d' not in view
assert 'valid_mask' not in view
assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}'
view['z_far'] = self.z_far
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view)
view['pts3d'] = pts3d
view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1)
pts3d = view['pts3d'].copy()
pts3d[~view['valid_mask']]=0
pts3d = pts3d.reshape(-1, pts3d.shape[-1])
try:
mmask = griddata(traj_3d[v], motion_mask_3d, pts3d, method='nearest', fill_value=0).astype(np.float32)
mmask = np.clip(mmask, 0, 1)
except Exception as e:
print(f"Failed to compute mmask for view {v} at index {idx}: {e}")
mmask = np.zeros((pts3d.shape[0],), dtype=np.float32)
view['dynamic_mask'] = mmask.reshape(valid_mask.shape)
# mmask_save.append((mmask.reshape(valid_mask.shape) * 255).astype(np.uint8))
# visualize masks
# # visualization
# colors = np.zeros((pts3d.shape[0], 3))
# colors[:, 0] = 255 * mmask # Green channel weighted by mmask
# point_cloud_df = pd.DataFrame(
# np.hstack((pts3d, colors)),
# columns=["x", "y", "z", "red", "green", "blue"]
# )
# point_cloud = PyntCloud(point_cloud_df)
# point_cloud.to_file(f"./tmp/po/point_cloud_{idx}.ply")
# psudo
# check all datatypes
for key, val in view.items():
res, err_msg = is_good_type(key, val)
assert res, f"{err_msg} with {key}={val} for view {view_name(view)}"
# if val.dtype in (torch.bool, np.float32, torch.float32, bool, np.int32, np.int64, np.uint8):
# print(f"{key}={val.shape} for view {view['label']}")
K = view['camera_intrinsics']
# Concatenate images, masks, and motion masks into one image and save to tmp/
# concatenated_images = []
# for i in range(len(img)):
# concatenated_image = np.concatenate((img[i], mask[i], mmask_save[i][...,None]*[255,255,255]), axis=0)
# concatenated_images.append(concatenated_image)
# concatenated_images = np.concatenate(concatenated_images, axis=1)
# concatenated_image_path = os.path.join('tmp', f'{idx}_concatenated.jpg')
# cv2.imwrite(concatenated_image_path, concatenated_images)
# last thing done!
for view in views:
# transpose to make sure all views are the same size
transpose_to_landscape(view)
# this allows to check whether the RNG is is the same state each time
view['rng'] = int.from_bytes(self._rng.bytes(4), 'big')
return views
if __name__ == "__main__":
from dust3r.datasets.base.base_stereo_view_dataset import view_name
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
import gradio as gr
import random
dataset_location = 'data/point_odyssey' # Change this to the correct path
dset = 'train'
use_augs = False
S = 2
N = 1
strides = [1,2,3,4,5,6,7,8,9]
clip_step = 2
quick = False # Set to True for quick testing
def visualize_scene(idx):
views = dataset[idx]
assert len(views) == 2
viz = SceneViz()
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.25)
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d']
valid_mask = views[view_idx]['valid_mask']
colors = rgb(views[view_idx]['img'])
viz.add_pointcloud(pts3d, colors, valid_mask)
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
focal=views[view_idx]['camera_intrinsics'][0, 0],
color=(255, 0, 0),
image=colors,
cam_size=cam_size)
os.makedirs('./tmp/po', exist_ok=True)
path = f"./tmp/po/po_scene_{idx}.glb"
return viz.save_glb(path)
dataset = PointOdysseyDUSt3R(
dataset_location=dataset_location,
dset=dset,
use_augs=use_augs,
S=S,
N=N,
strides=strides,
clip_step=clip_step,
quick=quick,
verbose=False,
resolution=224,
aug_crop=16,
dist_type='linear_9_1',
aug_focal=1.5,
z_far=80)
# around 514k samples
idxs = np.arange(0, len(dataset)-1, (len(dataset)-1)//10)
# idx = random.randint(0, len(dataset)-1)
# idx = 0
for idx in idxs:
print(f"Visualizing scene {idx}...")
visualize_scene(idx)
|