File size: 20,008 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import torchvision.transforms as transforms
import torch.nn.functional as F
from PIL import Image
from torch._C import dtype, set_flush_denormal
import dust3r.utils.po_utils.basic
import dust3r.utils.po_utils.improc
from dust3r.utils.po_utils.misc import farthest_point_sample_py
from dust3r.utils.po_utils.geom import apply_4x4_py, apply_pix_T_cam_py
import glob
import cv2
from torchvision.transforms import ColorJitter, GaussianBlur
from functools import partial
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset, is_good_type, transpose_to_landscape
from dust3r.utils.image import imread_cv2
from dust3r.utils.misc import get_stride_distribution
from dust3r.datasets.utils.geom import apply_4x4_py, realative_T_py
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.interpolate import griddata


from pyntcloud import PyntCloud
import pandas as pd

np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')




class PointOdysseyDUSt3R(BaseStereoViewDataset):
    def __init__(self,
                 dataset_location='data/pointodyssey',
                 dset='train',
                 use_augs=False,
                 S=2,
                 N=16,
                 strides=[1,2,3,4,5,6,7,8,9],
                 clip_step=2,
                 quick=False,
                 verbose=False,
                 dist_type=None,
                 clip_step_last_skip = 0,
                 motion_thresh = 1e-6,
                 *args, 
                 **kwargs
                 ):

        print('loading pointodyssey dataset...')
        super().__init__(*args, **kwargs)
        self.dataset_label = 'pointodyssey'
        self.split = dset
        self.S = S # stride
        self.N = N # min num points
        self.verbose = verbose
        self.motion_thresh = motion_thresh
        self.use_augs = use_augs
        self.dset = dset

        self.rgb_paths = []
        self.depth_paths = []
        self.normal_paths = []
        self.traj_2d_paths = []
        self.traj_3d_paths = []
        self.extrinsic_paths = []
        self.intrinsic_paths = []
        self.masks_paths = []
        self.valids_paths = []
        self.visibs_paths = []
        self.annotation_paths = []
        self.full_idxs = []
        self.sample_stride = []
        self.strides = strides

        self.subdirs = []
        self.sequences = []
        self.subdirs.append(os.path.join(dataset_location, dset))

        for subdir in self.subdirs:
            for seq in glob.glob(os.path.join(subdir, "*/")):
                seq_name = seq.split('/')[-1]
                self.sequences.append(seq)

        self.sequences = sorted(self.sequences)
        
        if quick:
           self.sequences = self.sequences[1:2] 
        
        if self.verbose:
            print(self.sequences)
        print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset))
        
        ## load trajectories
        print('loading trajectories...')


        
        for seq in self.sequences:
            if self.verbose: 
                print('seq', seq)

            rgb_path = os.path.join(seq, 'rgbs')
            info_path = os.path.join(seq, 'info.npz')
            annotations_path = os.path.join(seq, 'anno.npz')
            
            if os.path.isfile(info_path) and os.path.isfile(annotations_path):

                traj_3d_files = glob.glob(os.path.join(seq, 'trajs_3d', '*.npy'))
                if len(traj_3d_files):
                    traj_3d_files_0 = np.load(traj_3d_files[0], allow_pickle=True)
                    trajs_3d_shape = traj_3d_files_0.shape[0]
                else:
                    trajs_3d_shape = 0

                if len(traj_3d_files) and trajs_3d_shape > self.N:
                
                    for stride in strides:
                        for ii in range(0,len(os.listdir(rgb_path))-self.S*max(stride,clip_step_last_skip)+1, clip_step):
                            full_idx = ii + np.arange(self.S)*stride
                            self.rgb_paths.append([os.path.join(seq, 'rgbs', 'rgb_%05d.jpg' % idx) for idx in full_idx])
                            self.depth_paths.append([os.path.join(seq, 'depths', 'depth_%05d.png' % idx) for idx in full_idx])
                            self.normal_paths.append([os.path.join(seq, 'normals', 'normal_%05d.jpg' % idx) for idx in full_idx])
                            # self.traj_2d_paths.append([os.path.join(seq, 'trajs_2d', 'traj_2d_%05d.npy' % idx) for idx in full_idx])
                            self.traj_3d_paths.append([os.path.join(seq, 'trajs_3d', 'traj_3d_%05d.npy' % idx) for idx in full_idx])
                            self.extrinsic_paths.append([os.path.join(seq, 'extrinsics', 'extrinsic_%05d.npy' % idx) for idx in full_idx])
                            self.intrinsic_paths.append([os.path.join(seq, 'intrinsics', 'intrinsic_%05d.npy' % idx) for idx in full_idx])
                            self.masks_paths.append([os.path.join(seq, 'masks', 'mask_%05d.png' % idx) for idx in full_idx])
                            self.valids_paths.append([os.path.join(seq, 'valids', 'valid_%05d.npy' % idx) for idx in full_idx])
                            self.visibs_paths.append([os.path.join(seq, 'visibs', 'visib_%05d.npy' % idx) for idx in full_idx])

                            self.full_idxs.append(full_idx)
                            self.sample_stride.append(stride)
                        if self.verbose:
                            sys.stdout.write('.')
                            sys.stdout.flush()
                elif self.verbose:
                    print('rejecting seq for missing 3d')
            elif self.verbose:
                print('rejecting seq for missing info or anno')
        
        self.stride_counts = {}
        self.stride_idxs = {}
        for stride in strides:
            self.stride_counts[stride] = 0
            self.stride_idxs[stride] = []
        for i, stride in enumerate(self.sample_stride):
            self.stride_counts[stride] += 1
            self.stride_idxs[stride].append(i)
        print('stride counts:', self.stride_counts)
        
        if len(strides) > 1 and dist_type is not None:
            self._resample_clips(strides, dist_type)

        print('collected %d clips of length %d in %s (dset=%s)' % (
            len(self.rgb_paths), self.S, dataset_location, dset))

    def _resample_clips(self, strides, dist_type):

        # Get distribution of strides, and sample based on that
        dist = get_stride_distribution(strides, dist_type=dist_type)
        dist = dist / np.max(dist)
        max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
        num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
        print('resampled_num_clips_each_stride:', num_clips_each_stride)
        resampled_idxs = []
        for i, stride in enumerate(strides):
            resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()
        
        self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
        self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
        self.normal_paths = [self.normal_paths[i] for i in resampled_idxs]
        # self.traj_2d_paths = [self.traj_2d_paths[i] for i in resampled_idxs]
        self.traj_3d_paths = [self.traj_3d_paths[i] for i in resampled_idxs]
        self.extrinsic_paths = [self.extrinsic_paths[i] for i in resampled_idxs]
        self.intrinsic_paths = [self.intrinsic_paths[i] for i in resampled_idxs]
        self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
        self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]
        self.masks_paths = [self.masks_paths[i] for i in resampled_idxs]
        self.valids_paths = [self.valids_paths[i] for i in resampled_idxs]
        self.visibs_paths = [self.visibs_paths[i] for i in resampled_idxs]

    def __len__(self):
        return len(self.rgb_paths)
    
    def _get_views(self, index, resolution, rng):

        rgb_paths = self.rgb_paths[index]
        depth_paths = self.depth_paths[index]
        # normal_paths = self.normal_paths[index]
        traj_3d_paths = self.traj_3d_paths[index]
        extrinsic_paths = self.extrinsic_paths[index]
        intrinsic_paths = self.intrinsic_paths[index]
        masks_paths = self.masks_paths[index]
        valids_paths = self.valids_paths[index]
        visibs_paths = self.visibs_paths[index]

        # full_idx = self.full_idxs[index]




        traj_3d = [np.load(traj_3d_path, allow_pickle=True) for traj_3d_path in traj_3d_paths]
        pix_T_cams = [np.load(intrinsic_path, allow_pickle=True) for intrinsic_path in intrinsic_paths]
        cams_T_world = [np.load(extrinsic_path, allow_pickle=True) for extrinsic_path in extrinsic_paths]

        # motion_vector = traj_3d[0] - traj_3d[1]
        # motion_vector_norm = np.linalg.norm(motion_vector, axis=-1)
        # motion_mask_3d = motion_vector_norm > self.motion_thresh

        motion_mask_3d = (traj_3d[0]==traj_3d[1]).sum(axis=1)!=3
        # # Project motion_mask_3d to camera space
        # traj_3d_cam_space = apply_4x4_py(cams_T_world[0], traj_3d[0])
        # motion_mask_3d_cam_space = apply_pix_T_cam_py(pix_T_cams[0], traj_3d_cam_space)
        # rgb_image = imread_cv2(rgb_paths[0])
        # rgb_image2 = imread_cv2(rgb_paths[1])
        # height, width, _ = rgb_image.shape

        # # Filter motion_mask_3d_cam_space to be within image boundaries
        # motion_mask_3d_cam_space = np.round(motion_mask_3d_cam_space).astype(int)
        # x, y = motion_mask_3d_cam_space[:, 0], motion_mask_3d_cam_space[:, 1]
        # valid_mask = (x >= 0) & (x < width) & (y >= 0) & (y < height) & valid_mask & visib_mask
        # motion_mask_3d_cam_space = motion_mask_3d_cam_space[valid_mask]
        
        # motion_mask = np.zeros_like(rgb_image, dtype=np.float32)
        # motion_mask[motion_mask_3d_cam_space[:, 1], motion_mask_3d_cam_space[:, 0]] = [255, 255, 255]
        # # Save the RGB image and motion mask
        # rgb_image_path = os.path.join('tmp', '%05d_rgb.jpg' % index)
        # motion_mask_path = os.path.join('tmp', '%05d_motion_mask.png' % index)
        # sem_path = os.path.join('tmp', '%05d_sem.png' % index)
        # rgb_image2_path = os.path.join('tmp', '%05d_rgb2.jpg' % index)
        # cv2.imwrite(rgb_image_path, rgb_image)
        # cv2.imwrite(motion_mask_path, motion_mask)
        # cv2.imwrite(sem_path, sem_mask)
        # cv2.imwrite(rgb_image2_path, rgb_image2)
        # print(rgb_image_path)
        # print(motion_mask_path)
        # print(sem_path)
        # print(rgb_image2_path)

        # # Create a DataFrame for the point cloud
        # points = traj_3d[0]
        # colors = np.zeros_like(points)
        # colors[motion_mask_3d] = [255, 0, 0]  # Red for motion points
        # colors[~motion_mask_3d] = [0, 0, 0]  # Green for static points

        # point_cloud_df = pd.DataFrame(
        #     np.hstack((points, colors)),
        #     columns=["x", "y", "z", "red", "green", "blue"]
        # )

        # # Create a PyntCloud object
        # point_cloud = PyntCloud(point_cloud_df)
        # point_cloud.plot()

        # try ten samples to see if the motion mask is correct.
        
        views = []
        for i in range(2):
            
            impath = rgb_paths[i]
            depthpath = depth_paths[i]
            # masks_path = masks_paths[i]
            # valids_path = valids_paths[i]
            # visibs_path = visibs_paths[i]

            # load camera params
            extrinsics = cams_T_world[i]
            R = extrinsics[:3,:3]
            t = extrinsics[:3,3]
            camera_pose = np.eye(4, dtype=np.float32)
            camera_pose[:3,:3] = R.T
            camera_pose[:3,3] = -R.T @ t
            intrinsics = pix_T_cams[i]

            # load image and depth
            rgb_image = imread_cv2(impath)
            # masks_image = imread_cv2(masks_path)


            depth16 = cv2.imread(depthpath, cv2.IMREAD_ANYDEPTH)
            depthmap = depth16.astype(np.float32) / 65535.0 * 1000.0 # 1000 is the max depth in the dataset

            # masks_image, _, _ = self._crop_resize_if_necessary(
                # masks_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)


            views.append(dict(
                img=rgb_image,
                # mask=masks_image,
                depthmap=depthmap,
                camera_pose=camera_pose,
                camera_intrinsics=intrinsics,
                dataset=self.dataset_label,
                label=rgb_paths[i].split('/')[-3],
                instance=osp.split(rgb_paths[i])[1],
            ))
        return views, motion_mask_3d, traj_3d
    
    def __getitem__(self, idx):
        if isinstance(idx, tuple):
            # the idx is specifying the aspect-ratio
            idx, ar_idx = idx
        else:
            assert len(self._resolutions) == 1
            ar_idx = 0

        # set-up the rng
        if self.seed:  # reseed for each __getitem__
            self._rng = np.random.default_rng(seed=self.seed + idx)
        elif not hasattr(self, '_rng'):
            seed = torch.initial_seed()  # this is different for each dataloader process
            self._rng = np.random.default_rng(seed=seed)

        # over-loaded code
        resolution = self._resolutions[ar_idx]  # DO NOT CHANGE THIS (compatible with BatchedRandomSampler)
        views, motion_mask_3d, traj_3d = self._get_views(idx, resolution, self._rng)
        assert len(views) == self.num_views

        # check data-types
        # img = []
        # mask = []
        # mmask_save = []
        
        for v, view in enumerate(views):
            assert 'pts3d' not in view, f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}"
            view['idx'] = (idx, ar_idx, v)

            # img.append(np.array(view['img']))
            # mask.append(np.array(view['mask']))
            # encode the image
            width, height = view['img'].size
            view['true_shape'] = np.int32((height, width))
            view['img'] = self.transform(view['img'])
            # view['mask'] = self.transform(view['mask'])

            assert 'camera_intrinsics' in view
            if 'camera_pose' not in view:
                view['camera_pose'] = np.full((4, 4), np.nan, dtype=np.float32)
            else:
                assert np.isfinite(view['camera_pose']).all(), f'NaN in camera pose for view {view_name(view)}'
            assert 'pts3d' not in view
            assert 'valid_mask' not in view
            assert np.isfinite(view['depthmap']).all(), f'NaN in depthmap for view {view_name(view)}'
            view['z_far'] = self.z_far
            pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view)

            view['pts3d'] = pts3d
            view['valid_mask'] = valid_mask & np.isfinite(pts3d).all(axis=-1)

            pts3d = view['pts3d'].copy()
            pts3d[~view['valid_mask']]=0
            pts3d = pts3d.reshape(-1, pts3d.shape[-1])
            
            try:
                mmask = griddata(traj_3d[v], motion_mask_3d, pts3d, method='nearest', fill_value=0).astype(np.float32)
                mmask = np.clip(mmask, 0, 1)
            except Exception as e:
                print(f"Failed to compute mmask for view {v} at index {idx}: {e}")
                mmask = np.zeros((pts3d.shape[0],), dtype=np.float32)


            view['dynamic_mask'] = mmask.reshape(valid_mask.shape)
            

            # mmask_save.append((mmask.reshape(valid_mask.shape) * 255).astype(np.uint8))

            # visualize masks
            

            # # visualization
            # colors = np.zeros((pts3d.shape[0], 3))
            # colors[:, 0] = 255 * mmask  # Green channel weighted by mmask

            
            # point_cloud_df = pd.DataFrame(
            #     np.hstack((pts3d, colors)),
            #     columns=["x", "y", "z", "red", "green", "blue"]
            # )

            # point_cloud = PyntCloud(point_cloud_df)
            # point_cloud.to_file(f"./tmp/po/point_cloud_{idx}.ply")
            # psudo

            # check all datatypes
            for key, val in view.items():
                res, err_msg = is_good_type(key, val)
                assert res, f"{err_msg} with {key}={val} for view {view_name(view)}"
                # if val.dtype in (torch.bool, np.float32, torch.float32, bool, np.int32, np.int64, np.uint8):   
                    # print(f"{key}={val.shape} for view {view['label']}")
            K = view['camera_intrinsics']

        # Concatenate images, masks, and motion masks into one image and save to tmp/
        # concatenated_images = []
        # for i in range(len(img)):
        #     concatenated_image = np.concatenate((img[i], mask[i], mmask_save[i][...,None]*[255,255,255]), axis=0)
        #     concatenated_images.append(concatenated_image)
        
        # concatenated_images = np.concatenate(concatenated_images, axis=1)
        # concatenated_image_path = os.path.join('tmp', f'{idx}_concatenated.jpg')
        # cv2.imwrite(concatenated_image_path, concatenated_images)

        # last thing done!
        for view in views:
            # transpose to make sure all views are the same size
            transpose_to_landscape(view)
            # this allows to check whether the RNG is is the same state each time
            view['rng'] = int.from_bytes(self._rng.bytes(4), 'big')
        return views
        

if __name__ == "__main__":
    from dust3r.datasets.base.base_stereo_view_dataset import view_name
    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb
    import gradio as gr
    import random


    dataset_location = 'data/point_odyssey'  # Change this to the correct path
    dset = 'train'
    use_augs = False
    S = 2
    N = 1
    strides = [1,2,3,4,5,6,7,8,9]
    clip_step = 2
    quick = False  # Set to True for quick testing

    def visualize_scene(idx):
        views = dataset[idx]
        assert len(views) == 2
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.25)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
            viz.add_pointcloud(pts3d, colors, valid_mask)
            viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
                        focal=views[view_idx]['camera_intrinsics'][0, 0],
                        color=(255, 0, 0),
                        image=colors,
                        cam_size=cam_size)
        os.makedirs('./tmp/po', exist_ok=True)
        path = f"./tmp/po/po_scene_{idx}.glb"
        return viz.save_glb(path)

    dataset = PointOdysseyDUSt3R(
        dataset_location=dataset_location,
        dset=dset,
        use_augs=use_augs,
        S=S,
        N=N,
        strides=strides,
        clip_step=clip_step,
        quick=quick,
        verbose=False,
        resolution=224, 
        aug_crop=16,
        dist_type='linear_9_1',
        aug_focal=1.5,
        z_far=80)
# around 514k samples

    idxs = np.arange(0, len(dataset)-1, (len(dataset)-1)//10)
    # idx = random.randint(0, len(dataset)-1)
    # idx = 0
    for idx in idxs:
        print(f"Visualizing scene {idx}...")
        visualize_scene(idx)