File size: 10,937 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import glob
import PIL.Image
import torchvision.transforms as tvf

from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2, crop_img
from dust3r.utils.misc import get_stride_distribution

np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')
TAG_FLOAT = 202021.25
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
ToTensor = tvf.ToTensor()

def depth_read(filename):
    """ Read depth data from file, return as numpy array. """
    f = open(filename,'rb')
    check = np.fromfile(f,dtype=np.float32,count=1)[0]
    assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
    width = np.fromfile(f,dtype=np.int32,count=1)[0]
    height = np.fromfile(f,dtype=np.int32,count=1)[0]
    size = width*height
    assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
    depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
    return depth

def cam_read(filename):
    """ Read camera data, return (M,N) tuple.
    
    M is the intrinsic matrix, N is the extrinsic matrix, so that

    x = M*N*X,
    with x being a point in homogeneous image pixel coordinates, X being a
    point in homogeneous world coordinates.
    """
    f = open(filename,'rb')
    check = np.fromfile(f,dtype=np.float32,count=1)[0]
    assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
    M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
    N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
    return M,N

class SintelDUSt3R(BaseStereoViewDataset):
    def __init__(self,
                 dataset_location='data/sintel/training',
                 dset='clean',
                 use_augs=False,
                 S=2,
                 strides=[7],
                 clip_step=2,
                 quick=False,
                 verbose=False,
                 dist_type=None,
                 clip_step_last_skip = 0,
                 load_dynamic_mask=True,
                 *args, 
                 **kwargs
                 ):

        print('loading sintel dataset...')
        super().__init__(*args, **kwargs)
        self.dataset_label = 'sintel'
        self.split = dset
        self.S = S # stride
        self.verbose = verbose
        self.load_dynamic_mask = load_dynamic_mask

        self.use_augs = use_augs
        self.dset = dset

        self.rgb_paths = []
        self.depth_paths = []
        self.traj_paths = []
        self.annotation_paths = []
        self.dynamic_mask_paths = []
        self.full_idxs = []
        self.sample_stride = []
        self.strides = strides

        self.subdirs = []
        self.sequences = []
        self.subdirs.append(os.path.join(dataset_location, dset))

        for subdir in self.subdirs:
            for seq in glob.glob(os.path.join(subdir, "*/")):
                self.sequences.append(seq)

        self.sequences = sorted(self.sequences)
        if self.verbose:
            print(self.sequences)
        print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset))
        
        ## load trajectories
        print('loading trajectories...')

        if quick:
           self.sequences = self.sequences[1:2] 
        
        for seq in self.sequences:
            if self.verbose: 
                print('seq', seq)

            rgb_path = seq
            depth_path = seq.replace(dset,'depth')
            caminfo_path = seq.replace(dset,'camdata_left')
            dynamic_mask_path = seq.replace(dset,'dynamic_label_perfect')
            
            for stride in strides:
                for ii in range(1,len(os.listdir(rgb_path))-self.S*max(stride,clip_step_last_skip)+1, clip_step):
                    full_idx = ii + np.arange(self.S)*stride
                    self.rgb_paths.append([os.path.join(rgb_path, 'frame_%04d.png' % idx) for idx in full_idx])
                    self.depth_paths.append([os.path.join(depth_path, 'frame_%04d.dpt' % idx) for idx in full_idx])
                    self.annotation_paths.append([os.path.join(caminfo_path, 'frame_%04d.cam' % idx) for idx in full_idx])
                    self.dynamic_mask_paths.append([os.path.join(dynamic_mask_path, 'frame_%04d.png' % idx) for idx in full_idx])
                    self.full_idxs.append(full_idx)
                    self.sample_stride.append(stride)
                if self.verbose:
                    sys.stdout.write('.')
                    sys.stdout.flush()

        self.stride_counts = {}
        self.stride_idxs = {}
        for stride in strides:
            self.stride_counts[stride] = 0
            self.stride_idxs[stride] = []
        for i, stride in enumerate(self.sample_stride):
            self.stride_counts[stride] += 1
            self.stride_idxs[stride].append(i)
        print('stride counts:', self.stride_counts)
        
        if len(strides) > 1 and dist_type is not None:
            self._resample_clips(strides, dist_type)

        print('collected %d clips of length %d in %s (dset=%s)' % (
            len(self.rgb_paths), self.S, dataset_location, dset))
    
    def _resample_clips(self, strides, dist_type):

        # Get distribution of strides, and sample based on that
        dist = get_stride_distribution(strides, dist_type=dist_type)
        dist = dist / np.max(dist)
        max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
        num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
        print('resampled_num_clips_each_stride:', num_clips_each_stride)
        resampled_idxs = []
        for i, stride in enumerate(strides):
            resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()

        self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
        self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
        self.annotation_paths = [self.annotation_paths[i] for i in resampled_idxs]
        self.dynamic_mask_paths = [self.dynamic_mask_paths[i] for i in resampled_idxs]
        self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
        self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]

    def __len__(self):
        return len(self.rgb_paths)
    
    def _get_views(self, index, resolution, rng):

        rgb_paths = self.rgb_paths[index]
        depth_paths = self.depth_paths[index]
        full_idx = self.full_idxs[index]
        annotations_paths = self.annotation_paths[index]
        dynamic_mask_paths = self.dynamic_mask_paths[index]

        views = []
        for i in range(2):
            impath = rgb_paths[i]
            depthpath = depth_paths[i]
            dynamic_mask_path = dynamic_mask_paths[i]

            # load camera params
            intrinsics, extrinsics = cam_read(annotations_paths[i])
            intrinsics, extrinsics = np.array(intrinsics, dtype=np.float32), np.array(extrinsics, dtype=np.float32)
            R = extrinsics[:3,:3]
            t = extrinsics[:3,3]
            camera_pose = np.eye(4, dtype=np.float32)
            camera_pose[:3,:3] = R.T
            camera_pose[:3,3] = -R.T @ t

            # load image and depth
            rgb_image = imread_cv2(impath)
            depthmap = depth_read(depthpath)

            # load dynamic mask
            if dynamic_mask_path is not None and os.path.exists(dynamic_mask_path):
                dynamic_mask = PIL.Image.open(dynamic_mask_path).convert('L')
                dynamic_mask = ToTensor(dynamic_mask).sum(0).numpy()
                _, dynamic_mask, _ = self._crop_resize_if_necessary(
                rgb_image, dynamic_mask, intrinsics, resolution, rng=rng, info=impath)
                dynamic_mask = dynamic_mask > 0.5
                assert not np.all(dynamic_mask), f"Dynamic mask is all True for {impath}"
            else:
                dynamic_mask = np.ones((resolution[1],resolution[0]), dtype=bool)

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
            
            if self.load_dynamic_mask:
                views.append(dict(
                    img=rgb_image,
                    depthmap=depthmap,
                    camera_pose=camera_pose,
                    camera_intrinsics=intrinsics,
                    dataset=self.dataset_label,
                    label=rgb_paths[i].split('/')[-2],
                    instance=osp.split(rgb_paths[i])[1],
                    dynamic_mask=dynamic_mask,
                    full_idx=full_idx,
                ))
            else:
                views.append(dict(
                    img=rgb_image,
                    depthmap=depthmap,
                    camera_pose=camera_pose,
                    camera_intrinsics=intrinsics,
                    dataset=self.dataset_label,
                    label=rgb_paths[i].split('/')[-2],
                    instance=osp.split(rgb_paths[i])[1],
                    full_idx=full_idx,
                ))
        return views
        

if __name__ == "__main__":

    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb

    use_augs = False
    S = 2
    strides = [1]
    clip_step = 1
    quick = False  # Set to True for quick testing


    def visualize_scene(idx):
        views = dataset[idx]
        assert len(views) == 2
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.25)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
            viz.add_pointcloud(pts3d, colors, valid_mask)
            viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
                        focal=views[view_idx]['camera_intrinsics'][0, 0],
                        color=(255, 0, 0),
                        image=colors,
                        cam_size=cam_size)
        path = f"./tmp/sintel_scene_{idx}.glb"
        return viz.save_glb(path)

    dataset = SintelDUSt3R(
        use_augs=use_augs,
        S=S,
        strides=strides,
        clip_step=clip_step,
        quick=quick,
        verbose=False,
        resolution=(512,224), 
        seed = 777,
        clip_step_last_skip=0,
        aug_crop=16)

    idx = random.randint(0, len(dataset)-1)
    visualize_scene(idx)