File size: 10,937 Bytes
4f6b78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import sys
sys.path.append('.')
import os
import torch
import numpy as np
import os.path as osp
import glob
import PIL.Image
import torchvision.transforms as tvf
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2, crop_img
from dust3r.utils.misc import get_stride_distribution
np.random.seed(125)
torch.multiprocessing.set_sharing_strategy('file_system')
TAG_FLOAT = 202021.25
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
ToTensor = tvf.ToTensor()
def depth_read(filename):
""" Read depth data from file, return as numpy array. """
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def cam_read(filename):
""" Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
f = open(filename,'rb')
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3))
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4))
return M,N
class SintelDUSt3R(BaseStereoViewDataset):
def __init__(self,
dataset_location='data/sintel/training',
dset='clean',
use_augs=False,
S=2,
strides=[7],
clip_step=2,
quick=False,
verbose=False,
dist_type=None,
clip_step_last_skip = 0,
load_dynamic_mask=True,
*args,
**kwargs
):
print('loading sintel dataset...')
super().__init__(*args, **kwargs)
self.dataset_label = 'sintel'
self.split = dset
self.S = S # stride
self.verbose = verbose
self.load_dynamic_mask = load_dynamic_mask
self.use_augs = use_augs
self.dset = dset
self.rgb_paths = []
self.depth_paths = []
self.traj_paths = []
self.annotation_paths = []
self.dynamic_mask_paths = []
self.full_idxs = []
self.sample_stride = []
self.strides = strides
self.subdirs = []
self.sequences = []
self.subdirs.append(os.path.join(dataset_location, dset))
for subdir in self.subdirs:
for seq in glob.glob(os.path.join(subdir, "*/")):
self.sequences.append(seq)
self.sequences = sorted(self.sequences)
if self.verbose:
print(self.sequences)
print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset))
## load trajectories
print('loading trajectories...')
if quick:
self.sequences = self.sequences[1:2]
for seq in self.sequences:
if self.verbose:
print('seq', seq)
rgb_path = seq
depth_path = seq.replace(dset,'depth')
caminfo_path = seq.replace(dset,'camdata_left')
dynamic_mask_path = seq.replace(dset,'dynamic_label_perfect')
for stride in strides:
for ii in range(1,len(os.listdir(rgb_path))-self.S*max(stride,clip_step_last_skip)+1, clip_step):
full_idx = ii + np.arange(self.S)*stride
self.rgb_paths.append([os.path.join(rgb_path, 'frame_%04d.png' % idx) for idx in full_idx])
self.depth_paths.append([os.path.join(depth_path, 'frame_%04d.dpt' % idx) for idx in full_idx])
self.annotation_paths.append([os.path.join(caminfo_path, 'frame_%04d.cam' % idx) for idx in full_idx])
self.dynamic_mask_paths.append([os.path.join(dynamic_mask_path, 'frame_%04d.png' % idx) for idx in full_idx])
self.full_idxs.append(full_idx)
self.sample_stride.append(stride)
if self.verbose:
sys.stdout.write('.')
sys.stdout.flush()
self.stride_counts = {}
self.stride_idxs = {}
for stride in strides:
self.stride_counts[stride] = 0
self.stride_idxs[stride] = []
for i, stride in enumerate(self.sample_stride):
self.stride_counts[stride] += 1
self.stride_idxs[stride].append(i)
print('stride counts:', self.stride_counts)
if len(strides) > 1 and dist_type is not None:
self._resample_clips(strides, dist_type)
print('collected %d clips of length %d in %s (dset=%s)' % (
len(self.rgb_paths), self.S, dataset_location, dset))
def _resample_clips(self, strides, dist_type):
# Get distribution of strides, and sample based on that
dist = get_stride_distribution(strides, dist_type=dist_type)
dist = dist / np.max(dist)
max_num_clips = self.stride_counts[strides[np.argmax(dist)]]
num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)]
print('resampled_num_clips_each_stride:', num_clips_each_stride)
resampled_idxs = []
for i, stride in enumerate(strides):
resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist()
self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs]
self.depth_paths = [self.depth_paths[i] for i in resampled_idxs]
self.annotation_paths = [self.annotation_paths[i] for i in resampled_idxs]
self.dynamic_mask_paths = [self.dynamic_mask_paths[i] for i in resampled_idxs]
self.full_idxs = [self.full_idxs[i] for i in resampled_idxs]
self.sample_stride = [self.sample_stride[i] for i in resampled_idxs]
def __len__(self):
return len(self.rgb_paths)
def _get_views(self, index, resolution, rng):
rgb_paths = self.rgb_paths[index]
depth_paths = self.depth_paths[index]
full_idx = self.full_idxs[index]
annotations_paths = self.annotation_paths[index]
dynamic_mask_paths = self.dynamic_mask_paths[index]
views = []
for i in range(2):
impath = rgb_paths[i]
depthpath = depth_paths[i]
dynamic_mask_path = dynamic_mask_paths[i]
# load camera params
intrinsics, extrinsics = cam_read(annotations_paths[i])
intrinsics, extrinsics = np.array(intrinsics, dtype=np.float32), np.array(extrinsics, dtype=np.float32)
R = extrinsics[:3,:3]
t = extrinsics[:3,3]
camera_pose = np.eye(4, dtype=np.float32)
camera_pose[:3,:3] = R.T
camera_pose[:3,3] = -R.T @ t
# load image and depth
rgb_image = imread_cv2(impath)
depthmap = depth_read(depthpath)
# load dynamic mask
if dynamic_mask_path is not None and os.path.exists(dynamic_mask_path):
dynamic_mask = PIL.Image.open(dynamic_mask_path).convert('L')
dynamic_mask = ToTensor(dynamic_mask).sum(0).numpy()
_, dynamic_mask, _ = self._crop_resize_if_necessary(
rgb_image, dynamic_mask, intrinsics, resolution, rng=rng, info=impath)
dynamic_mask = dynamic_mask > 0.5
assert not np.all(dynamic_mask), f"Dynamic mask is all True for {impath}"
else:
dynamic_mask = np.ones((resolution[1],resolution[0]), dtype=bool)
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath)
if self.load_dynamic_mask:
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset=self.dataset_label,
label=rgb_paths[i].split('/')[-2],
instance=osp.split(rgb_paths[i])[1],
dynamic_mask=dynamic_mask,
full_idx=full_idx,
))
else:
views.append(dict(
img=rgb_image,
depthmap=depthmap,
camera_pose=camera_pose,
camera_intrinsics=intrinsics,
dataset=self.dataset_label,
label=rgb_paths[i].split('/')[-2],
instance=osp.split(rgb_paths[i])[1],
full_idx=full_idx,
))
return views
if __name__ == "__main__":
from dust3r.viz import SceneViz, auto_cam_size
from dust3r.utils.image import rgb
use_augs = False
S = 2
strides = [1]
clip_step = 1
quick = False # Set to True for quick testing
def visualize_scene(idx):
views = dataset[idx]
assert len(views) == 2
viz = SceneViz()
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
cam_size = max(auto_cam_size(poses), 0.25)
for view_idx in [0, 1]:
pts3d = views[view_idx]['pts3d']
valid_mask = views[view_idx]['valid_mask']
colors = rgb(views[view_idx]['img'])
viz.add_pointcloud(pts3d, colors, valid_mask)
viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
focal=views[view_idx]['camera_intrinsics'][0, 0],
color=(255, 0, 0),
image=colors,
cam_size=cam_size)
path = f"./tmp/sintel_scene_{idx}.glb"
return viz.save_glb(path)
dataset = SintelDUSt3R(
use_augs=use_augs,
S=S,
strides=strides,
clip_step=clip_step,
quick=quick,
verbose=False,
resolution=(512,224),
seed = 777,
clip_step_last_skip=0,
aug_crop=16)
idx = random.randint(0, len(dataset)-1)
visualize_scene(idx) |