File size: 12,061 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import numpy as np
from os.path import isfile
import torch
import torch.nn.functional as F
EPS = 1e-6
import copy

def sub2ind(height, width, y, x):
    return y*width + x

def ind2sub(height, width, ind):
    y = ind // width
    x = ind % width
    return y, x
    
def get_lr_str(lr):
    lrn = "%.1e" % lr # e.g., 5.0e-04
    lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4
    return lrn
    
def strnum(x):
    s = '%g' % x
    if '.' in s:
        if x < 1.0:
            s = s[s.index('.'):]
        s = s[:min(len(s),4)]
    return s

def assert_same_shape(t1, t2):
    for (x, y) in zip(list(t1.shape), list(t2.shape)):
        assert(x==y)

def print_stats(name, tensor):
    shape = tensor.shape
    tensor = tensor.detach().cpu().numpy()
    print('%s (%s) min = %.2f, mean = %.2f, max = %.2f' % (name, tensor.dtype, np.min(tensor), np.mean(tensor), np.max(tensor)), shape)

def print_stats_py(name, tensor):
    shape = tensor.shape
    print('%s (%s) min = %.2f, mean = %.2f, max = %.2f' % (name, tensor.dtype, np.min(tensor), np.mean(tensor), np.max(tensor)), shape)

def print_(name, tensor):
    tensor = tensor.detach().cpu().numpy()
    print(name, tensor, tensor.shape)

def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

def normalize_single(d):
    # d is a whatever shape torch tensor
    dmin = torch.min(d)
    dmax = torch.max(d)
    d = (d-dmin)/(EPS+(dmax-dmin))
    return d

def normalize(d):
    # d is B x whatever. normalize within each element of the batch
    out = torch.zeros(d.size())
    if d.is_cuda:
        out = out.cuda()
    B = list(d.size())[0]
    for b in list(range(B)):
        out[b] = normalize_single(d[b])
    return out

def hard_argmax2d(tensor):
    B, C, Y, X = list(tensor.shape)
    assert(C==1)

    # flatten the Tensor along the height and width axes
    flat_tensor = tensor.reshape(B, -1)
    # argmax of the flat tensor
    argmax = torch.argmax(flat_tensor, dim=1)

    # convert the indices into 2d coordinates
    argmax_y = torch.floor(argmax / X) # row
    argmax_x = argmax % X # col

    argmax_y = argmax_y.reshape(B)
    argmax_x = argmax_x.reshape(B)
    return argmax_y, argmax_x

def argmax2d(heat, hard=True):
    B, C, Y, X = list(heat.shape)
    assert(C==1)

    if hard:
        # hard argmax
        loc_y, loc_x = hard_argmax2d(heat)
        loc_y = loc_y.float()
        loc_x = loc_x.float()
    else:
        heat = heat.reshape(B, Y*X)
        prob = torch.nn.functional.softmax(heat, dim=1)

        grid_y, grid_x = meshgrid2d(B, Y, X)

        grid_y = grid_y.reshape(B, -1)
        grid_x = grid_x.reshape(B, -1)
        
        loc_y = torch.sum(grid_y*prob, dim=1)
        loc_x = torch.sum(grid_x*prob, dim=1)
        # these are B
        
    return loc_y, loc_x

def reduce_masked_mean(x, mask, dim=None, keepdim=False):
    # x and mask are the same shape, or at least broadcastably so < actually it's safer if you disallow broadcasting
    # returns shape-1
    # axis can be a list of axes
    for (a,b) in zip(x.size(), mask.size()):
        # if not b==1: 
        assert(a==b) # some shape mismatch!
    # assert(x.size() == mask.size())
    prod = x*mask
    if dim is None:
        numer = torch.sum(prod)
        denom = EPS+torch.sum(mask)
    else:
        numer = torch.sum(prod, dim=dim, keepdim=keepdim)
        denom = EPS+torch.sum(mask, dim=dim, keepdim=keepdim)
        
    mean = numer/denom
    return mean

def reduce_masked_median(x, mask, keep_batch=False):
    # x and mask are the same shape
    assert(x.size() == mask.size())
    device = x.device

    B = list(x.shape)[0]
    x = x.detach().cpu().numpy()
    mask = mask.detach().cpu().numpy()

    if keep_batch:
        x = np.reshape(x, [B, -1])
        mask = np.reshape(mask, [B, -1])
        meds = np.zeros([B], np.float32)
        for b in list(range(B)):
            xb = x[b]
            mb = mask[b]
            if np.sum(mb) > 0:
                xb = xb[mb > 0]
                meds[b] = np.median(xb)
            else:
                meds[b] = np.nan
        meds = torch.from_numpy(meds).to(device)
        return meds.float()
    else:
        x = np.reshape(x, [-1])
        mask = np.reshape(mask, [-1])
        if np.sum(mask) > 0:
            x = x[mask > 0]
            med = np.median(x)
        else:
            med = np.nan
        med = np.array([med], np.float32)
        med = torch.from_numpy(med).to(device)
        return med.float()

def pack_seqdim(tensor, B):
    shapelist = list(tensor.shape)
    B_, S = shapelist[:2]
    assert(B==B_)
    otherdims = shapelist[2:]
    tensor = torch.reshape(tensor, [B*S]+otherdims)
    return tensor

def unpack_seqdim(tensor, B):
    shapelist = list(tensor.shape)
    BS = shapelist[0]
    assert(BS%B==0)
    otherdims = shapelist[1:]
    S = int(BS/B)
    tensor = torch.reshape(tensor, [B,S]+otherdims)
    return tensor

def meshgrid2d(B, Y, X, stack=False, norm=False, device='cuda', on_chans=False):
    # returns a meshgrid sized B x Y x X

    grid_y = torch.linspace(0.0, Y-1, Y, device=torch.device(device))
    grid_y = torch.reshape(grid_y, [1, Y, 1])
    grid_y = grid_y.repeat(B, 1, X)

    grid_x = torch.linspace(0.0, X-1, X, device=torch.device(device))
    grid_x = torch.reshape(grid_x, [1, 1, X])
    grid_x = grid_x.repeat(B, Y, 1)

    if norm:
        grid_y, grid_x = normalize_grid2d(
            grid_y, grid_x, Y, X)

    if stack:
        # note we stack in xy order
        # (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample)
        if on_chans:
            grid = torch.stack([grid_x, grid_y], dim=1)
        else:
            grid = torch.stack([grid_x, grid_y], dim=-1)
        return grid
    else:
        return grid_y, grid_x

def meshgrid3d(B, Z, Y, X, stack=False, norm=False, device='cuda'):
    # returns a meshgrid sized B x Z x Y x X
    
    grid_z = torch.linspace(0.0, Z-1, Z, device=device)
    grid_z = torch.reshape(grid_z, [1, Z, 1, 1])
    grid_z = grid_z.repeat(B, 1, Y, X)

    grid_y = torch.linspace(0.0, Y-1, Y, device=device)
    grid_y = torch.reshape(grid_y, [1, 1, Y, 1])
    grid_y = grid_y.repeat(B, Z, 1, X)

    grid_x = torch.linspace(0.0, X-1, X, device=device)
    grid_x = torch.reshape(grid_x, [1, 1, 1, X])
    grid_x = grid_x.repeat(B, Z, Y, 1)

    # if cuda:
    #     grid_z = grid_z.cuda()
    #     grid_y = grid_y.cuda()
    #     grid_x = grid_x.cuda()
        
    if norm:
        grid_z, grid_y, grid_x = normalize_grid3d(
            grid_z, grid_y, grid_x, Z, Y, X)

    if stack:
        # note we stack in xyz order
        # (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample)
        grid = torch.stack([grid_x, grid_y, grid_z], dim=-1)
        return grid
    else:
        return grid_z, grid_y, grid_x
    
def normalize_grid2d(grid_y, grid_x, Y, X, clamp_extreme=True):
    # make things in [-1,1]
    grid_y = 2.0*(grid_y / float(Y-1)) - 1.0
    grid_x = 2.0*(grid_x / float(X-1)) - 1.0
    
    if clamp_extreme:
        grid_y = torch.clamp(grid_y, min=-2.0, max=2.0)
        grid_x = torch.clamp(grid_x, min=-2.0, max=2.0)
        
    return grid_y, grid_x

def normalize_grid3d(grid_z, grid_y, grid_x, Z, Y, X, clamp_extreme=True):
    # make things in [-1,1]
    grid_z = 2.0*(grid_z / float(Z-1)) - 1.0
    grid_y = 2.0*(grid_y / float(Y-1)) - 1.0
    grid_x = 2.0*(grid_x / float(X-1)) - 1.0
    
    if clamp_extreme:
        grid_z = torch.clamp(grid_z, min=-2.0, max=2.0)
        grid_y = torch.clamp(grid_y, min=-2.0, max=2.0)
        grid_x = torch.clamp(grid_x, min=-2.0, max=2.0)
    
    return grid_z, grid_y, grid_x

def gridcloud2d(B, Y, X, norm=False, device='cuda'):
    # we want to sample for each location in the grid
    grid_y, grid_x = meshgrid2d(B, Y, X, norm=norm, device=device)
    x = torch.reshape(grid_x, [B, -1])
    y = torch.reshape(grid_y, [B, -1])
    # these are B x N
    xy = torch.stack([x, y], dim=2)
    # this is B x N x 2
    return xy

def gridcloud3d(B, Z, Y, X, norm=False, device='cuda'):
    # we want to sample for each location in the grid
    grid_z, grid_y, grid_x = meshgrid3d(B, Z, Y, X, norm=norm, device=device)
    x = torch.reshape(grid_x, [B, -1])
    y = torch.reshape(grid_y, [B, -1])
    z = torch.reshape(grid_z, [B, -1])
    # these are B x N
    xyz = torch.stack([x, y, z], dim=2)
    # this is B x N x 3
    return xyz

import re
def readPFM(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header == b'PF':
        color = True
    elif header == b'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().rstrip())
    if scale < 0: # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>' # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data    

def normalize_boxlist2d(boxlist2d, H, W):
    boxlist2d = boxlist2d.clone()
    ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
    ymin = ymin / float(H)
    ymax = ymax / float(H)
    xmin = xmin / float(W)
    xmax = xmax / float(W)
    boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
    return boxlist2d

def unnormalize_boxlist2d(boxlist2d, H, W):
    boxlist2d = boxlist2d.clone()
    ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
    ymin = ymin * float(H)
    ymax = ymax * float(H)
    xmin = xmin * float(W)
    xmax = xmax * float(W)
    boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
    return boxlist2d

def unnormalize_box2d(box2d, H, W):
    return unnormalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)

def normalize_box2d(box2d, H, W):
    return normalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)

def get_gaussian_kernel_2d(channels, kernel_size=3, sigma=2.0, mid_one=False):
    C = channels
    xy_grid = gridcloud2d(C, kernel_size, kernel_size) # C x N x 2

    mean = (kernel_size - 1)/2.0
    variance = sigma**2.0

    gaussian_kernel = (1.0/(2.0*np.pi*variance)**1.5) * torch.exp(-torch.sum((xy_grid - mean)**2.0, dim=-1) / (2.0*variance)) # C X N
    gaussian_kernel = gaussian_kernel.view(C, 1, kernel_size, kernel_size) # C x 1 x 3 x 3
    kernel_sum = torch.sum(gaussian_kernel, dim=(2,3), keepdim=True)

    gaussian_kernel = gaussian_kernel / kernel_sum # normalize

    if mid_one:
        # normalize so that the middle element is 1
        maxval = gaussian_kernel[:,:,(kernel_size//2),(kernel_size//2)].reshape(C, 1, 1, 1)
        gaussian_kernel = gaussian_kernel / maxval

    return gaussian_kernel

def gaussian_blur_2d(input, kernel_size=3, sigma=2.0, reflect_pad=False, mid_one=False):
    B, C, Z, X = input.shape
    kernel = get_gaussian_kernel_2d(C, kernel_size, sigma, mid_one=mid_one)
    if reflect_pad:
        pad = (kernel_size - 1)//2
        out = F.pad(input, (pad, pad, pad, pad), mode='reflect')
        out = F.conv2d(out, kernel, padding=0, groups=C)
    else:
        out = F.conv2d(input, kernel, padding=(kernel_size - 1)//2, groups=C)
    return out

def gradient2d(x, absolute=False, square=False, return_sum=False):
    # x should be B x C x H x W
    dh = x[:, :, 1:, :] - x[:, :, :-1, :]
    dw = x[:, :, :, 1:] - x[:, :, :, :-1]

    zeros = torch.zeros_like(x)
    zero_h = zeros[:, :, 0:1, :]
    zero_w = zeros[:, :, :, 0:1]
    dh = torch.cat([dh, zero_h], axis=2)
    dw = torch.cat([dw, zero_w], axis=3)
    if absolute:
        dh = torch.abs(dh)
        dw = torch.abs(dw)
    if square:
        dh = dh ** 2
        dw = dw ** 2
    if return_sum:
        return dh+dw
    else: 
        return dh, dw