File size: 17,072 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import torch
import numpy as np
import torchvision.ops as ops

def matmul2(mat1, mat2):
    return torch.matmul(mat1, mat2)

def matmul3(mat1, mat2, mat3):
    return torch.matmul(mat1, torch.matmul(mat2, mat3))

def eye_3x3(B, device='cuda'):
    rt = torch.eye(3, device=torch.device(device)).view(1,3,3).repeat([B, 1, 1])
    return rt

def eye_4x4(B, device='cuda'):
    rt = torch.eye(4, device=torch.device(device)).view(1,4,4).repeat([B, 1, 1])
    return rt

def safe_inverse(a):
    inv = a.clone()
    r_transpose = a[:3, :3].transpose(0, 1)  # inverse of rotation matrix

    inv[:3, :3] = r_transpose
    inv[:3, 3:4] = -torch.matmul(r_transpose, a[:3, 3:4])

    return inv

def safe_inverse_batch(a): #parallel version
    B, _, _ = list(a.shape)
    inv = a.clone()
    r_transpose = a[:, :3, :3].transpose(1,2) #inverse of rotation matrix

    inv[:, :3, :3] = r_transpose
    inv[:, :3, 3:4] = -torch.matmul(r_transpose, a[:, :3, 3:4])

    return inv


def safe_inverse_single(a):
    r, t = split_rt_single(a)
    t = t.view(3,1)
    r_transpose = r.t()
    inv = torch.cat([r_transpose, -torch.matmul(r_transpose, t)], 1)
    bottom_row = a[3:4, :] # this is [0, 0, 0, 1]
    # bottom_row = torch.tensor([0.,0.,0.,1.]).view(1,4)
    inv = torch.cat([inv, bottom_row], 0)
    return inv

def split_intrinsics(K):
    # K is B x 3 x 3 or B x 4 x 4
    fx = K[:,0,0]
    fy = K[:,1,1]
    x0 = K[:,0,2]
    y0 = K[:,1,2]
    return fx, fy, x0, y0

def apply_pix_T_cam(pix_T_cam, xyz):

    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    
    # xyz is shaped B x H*W x 3
    # returns xy, shaped B x H*W x 2
    
    B, N, C = list(xyz.shape)
    assert(C==3)
    
    x, y, z = torch.unbind(xyz, axis=-1)

    fx = torch.reshape(fx, [B, 1])
    fy = torch.reshape(fy, [B, 1])
    x0 = torch.reshape(x0, [B, 1])
    y0 = torch.reshape(y0, [B, 1])

    EPS = 1e-4
    z = torch.clamp(z, min=EPS)
    x = (x*fx)/(z)+x0
    y = (y*fy)/(z)+y0
    xy = torch.stack([x, y], axis=-1)
    return xy

def apply_pix_T_cam_py(pix_T_cam, xyz):

    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    
    # xyz is shaped B x H*W x 3
    # returns xy, shaped B x H*W x 2
    
    B, N, C = list(xyz.shape)
    assert(C==3)
    
    x, y, z = xyz[:,:,0], xyz[:,:,1], xyz[:,:,2]

    fx = np.reshape(fx, [B, 1])
    fy = np.reshape(fy, [B, 1])
    x0 = np.reshape(x0, [B, 1])
    y0 = np.reshape(y0, [B, 1])

    EPS = 1e-4
    z = np.clip(z, EPS, None)
    x = (x*fx)/(z)+x0
    y = (y*fy)/(z)+y0
    xy = np.stack([x, y], axis=-1)
    return xy

def get_camM_T_camXs(origin_T_camXs, ind=0):
    B, S = list(origin_T_camXs.shape)[0:2]
    camM_T_camXs = torch.zeros_like(origin_T_camXs)
    for b in list(range(B)):
        camM_T_origin = safe_inverse_single(origin_T_camXs[b,ind])
        for s in list(range(S)):
            camM_T_camXs[b,s] = torch.matmul(camM_T_origin, origin_T_camXs[b,s])
    return camM_T_camXs


def realative_T_py(cam_T1, cam_T2):
    cam_T1 = torch.tensor(cam_T1, dtype=torch.float32)
    cam_T2 = torch.tensor(cam_T2, dtype=torch.float32)
    inv_cam_T1 = safe_inverse(cam_T1)
    relative_transform = torch.matmul(inv_cam_T1, cam_T2)
    return relative_transform.numpy()

def apply_4x4(RT, xyz):
    B, N, _ = list(xyz.shape)
    ones = torch.ones_like(xyz[:,:,0:1])
    xyz1 = torch.cat([xyz, ones], 2)
    xyz1_t = torch.transpose(xyz1, 1, 2)
    # this is B x 4 x N
    xyz2_t = torch.matmul(RT, xyz1_t)
    xyz2 = torch.transpose(xyz2_t, 1, 2)
    xyz2 = xyz2[:,:,:3]
    return xyz2

def apply_4x4_py(RT, xyz):
    ones = np.ones_like(xyz[:, 0:1])
    xyz1 = np.concatenate([xyz, ones], 1)
    xyz1_t = xyz1.transpose(1, 0)
    xyz2_t = np.matmul(RT, xyz1_t)
    xyz2 = xyz2_t.transpose(1, 0)
    xyz2 = xyz2[:, :3]
    return xyz2

def apply_4x4_py_batch(RT, xyz):
    # print('RT', RT.shape)
    B, N, _ = list(xyz.shape)
    ones = np.ones_like(xyz[:,:,0:1])
    xyz1 = np.concatenate([xyz, ones], 2)
    # print('xyz1', xyz1.shape)
    xyz1_t = xyz1.transpose(0,2,1)
    # print('xyz1_t', xyz1_t.shape)
    # this is B x 4 x N
    xyz2_t = np.matmul(RT, xyz1_t)
    # print('xyz2_t', xyz2_t.shape)
    xyz2 = xyz2_t.transpose(0,2,1)
    # print('xyz2', xyz2.shape)
    xyz2 = xyz2[:,:,:3]
    return xyz2

def apply_3x3(RT, xy):
    B, N, _ = list(xy.shape)
    ones = torch.ones_like(xy[:,:,0:1])
    xy1 = torch.cat([xy, ones], 2)
    xy1_t = torch.transpose(xy1, 1, 2)
    # this is B x 4 x N
    xy2_t = torch.matmul(RT, xy1_t)
    xy2 = torch.transpose(xy2_t, 1, 2)
    xy2 = xy2[:,:,:2]
    return xy2

def generate_polygon(ctr_x, ctr_y, avg_r, irregularity, spikiness, num_verts):
    '''
    Start with the center of the polygon at ctr_x, ctr_y, 
    Then creates the polygon by sampling points on a circle around the center.
    Random noise is added by varying the angular spacing between sequential points,
    and by varying the radial distance of each point from the centre.

    Params:
        ctr_x, ctr_y - coordinates of the "centre" of the polygon
        avg_r - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude.
        irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts]
        spikiness - [0,1] indicating how much variance there is in each vertex from the circle of radius avg_r. [0,1] will map to [0, avg_r]
pp        num_verts

    Returns:
        np.array [num_verts, 2] - CCW order.
    '''
    # spikiness
    spikiness = np.clip(spikiness, 0, 1) * avg_r

    # generate n angle steps
    irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / num_verts
    lower = (2*np.pi / num_verts) - irregularity
    upper = (2*np.pi / num_verts) + irregularity

    # angle steps
    angle_steps = np.random.uniform(lower, upper, num_verts)
    sc = (2 * np.pi) / angle_steps.sum()
    angle_steps *= sc

    # get all radii
    angle = np.random.uniform(0, 2*np.pi)
    radii = np.clip(np.random.normal(avg_r, spikiness, num_verts), 0, 2 * avg_r)

    # compute all points
    points = []
    for i in range(num_verts):
        x = ctr_x + radii[i] * np.cos(angle)
        y = ctr_y + radii[i] * np.sin(angle)
        points.append([x, y])
        angle += angle_steps[i]

    return np.array(points).astype(int)


def get_random_affine_2d(B, rot_min=-5.0, rot_max=5.0, tx_min=-0.1, tx_max=0.1, ty_min=-0.1, ty_max=0.1, sx_min=-0.05, sx_max=0.05, sy_min=-0.05, sy_max=0.05, shx_min=-0.05, shx_max=0.05, shy_min=-0.05, shy_max=0.05):
    '''
    Params:
        rot_min: rotation amount min
        rot_max: rotation amount max

        tx_min: translation x min
        tx_max: translation x max

        ty_min: translation y min
        ty_max: translation y max

        sx_min: scaling x min
        sx_max: scaling x max

        sy_min: scaling y min
        sy_max: scaling y max

        shx_min: shear x min
        shx_max: shear x max

        shy_min: shear y min
        shy_max: shear y max

    Returns:
        transformation matrix: (B, 3, 3)
    '''
    # rotation
    if rot_max - rot_min != 0:
        rot_amount = np.random.uniform(low=rot_min, high=rot_max, size=B)
        rot_amount = np.pi/180.0*rot_amount
    else:
        rot_amount = rot_min
    rotation = np.zeros((B, 3, 3)) # B, 3, 3
    rotation[:, 2, 2] = 1
    rotation[:, 0, 0] = np.cos(rot_amount)
    rotation[:, 0, 1] = -np.sin(rot_amount)
    rotation[:, 1, 0] = np.sin(rot_amount)
    rotation[:, 1, 1] = np.cos(rot_amount)

    # translation
    translation = np.zeros((B, 3, 3)) # B, 3, 3
    translation[:, [0,1,2], [0,1,2]] = 1 
    if (tx_max - tx_min) > 0:
        trans_x = np.random.uniform(low=tx_min, high=tx_max, size=B)
        translation[:, 0, 2] = trans_x
    # else:
    #     translation[:, 0, 2] = tx_max
    if ty_max - ty_min != 0:
        trans_y = np.random.uniform(low=ty_min, high=ty_max, size=B)
        translation[:, 1, 2] = trans_y
    # else:
    #     translation[:, 1, 2] = ty_max

    # scaling
    scaling = np.zeros((B, 3, 3)) # B, 3, 3
    scaling[:, [0,1,2], [0,1,2]] = 1 
    if (sx_max - sx_min) > 0:
        scale_x = 1 + np.random.uniform(low=sx_min, high=sx_max, size=B)
        scaling[:, 0, 0] = scale_x
    # else:
    #     scaling[:, 0, 0] = sx_max
    if (sy_max - sy_min) > 0:
        scale_y = 1 + np.random.uniform(low=sy_min, high=sy_max, size=B)
        scaling[:, 1, 1] = scale_y
    # else:
    #     scaling[:, 1, 1] = sy_max

    # shear
    shear = np.zeros((B, 3, 3)) # B, 3, 3
    shear[:, [0,1,2], [0,1,2]] = 1 
    if (shx_max - shx_min) > 0:
        shear_x = np.random.uniform(low=shx_min, high=shx_max, size=B)
        shear[:, 0, 1] = shear_x
    # else:
    #     shear[:, 0, 1] = shx_max
    if (shy_max - shy_min) > 0:
        shear_y = np.random.uniform(low=shy_min, high=shy_max, size=B)
        shear[:, 1, 0] = shear_y
    # else:
    #     shear[:, 1, 0] = shy_max

    # compose all those
    rt = np.einsum("ijk,ikl->ijl", rotation, translation)
    ss = np.einsum("ijk,ikl->ijl", scaling, shear)
    trans = np.einsum("ijk,ikl->ijl", rt, ss)

    return trans

def get_centroid_from_box2d(box2d):
    ymin = box2d[:,0]
    xmin = box2d[:,1]
    ymax = box2d[:,2]
    xmax = box2d[:,3]
    x = (xmin+xmax)/2.0
    y = (ymin+ymax)/2.0
    return y, x

def normalize_boxlist2d(boxlist2d, H, W):
    boxlist2d = boxlist2d.clone()
    ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
    ymin = ymin / float(H)
    ymax = ymax / float(H)
    xmin = xmin / float(W)
    xmax = xmax / float(W)
    boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
    return boxlist2d

def unnormalize_boxlist2d(boxlist2d, H, W):
    boxlist2d = boxlist2d.clone()
    ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
    ymin = ymin * float(H)
    ymax = ymax * float(H)
    xmin = xmin * float(W)
    xmax = xmax * float(W)
    boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
    return boxlist2d

def unnormalize_box2d(box2d, H, W):
    return unnormalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)

def normalize_box2d(box2d, H, W):
    return normalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)

def get_size_from_box2d(box2d):
    ymin = box2d[:,0]
    xmin = box2d[:,1]
    ymax = box2d[:,2]
    xmax = box2d[:,3]
    height = ymax-ymin
    width = xmax-xmin
    return height, width

def crop_and_resize(im, boxlist, PH, PW, boxlist_is_normalized=False):
    B, C, H, W = im.shape
    B2, N, D = boxlist.shape
    assert(B==B2)
    assert(D==4)
    # PH, PW is the size to resize to

    # output is B,N,C,PH,PW

    # pt wants xy xy, unnormalized
    if boxlist_is_normalized:
        boxlist_unnorm = unnormalize_boxlist2d(boxlist, H, W)
    else:
        boxlist_unnorm = boxlist
        
    ymin, xmin, ymax, xmax = boxlist_unnorm.unbind(2)
    # boxlist_pt = torch.stack([boxlist_unnorm[:,1], boxlist_unnorm[:,0], boxlist_unnorm[:,3], boxlist_unnorm[:,2]], dim=1)
    boxlist_pt = torch.stack([xmin, ymin, xmax, ymax], dim=2)
    # we want a B-len list of K x 4 arrays

    # print('im', im.shape)
    # print('boxlist', boxlist.shape)
    # print('boxlist_pt', boxlist_pt.shape)

    # boxlist_pt = list(boxlist_pt.unbind(0))

    crops = []
    for b in range(B):
        crops_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW))
        crops.append(crops_b)
    # # crops = im

    # print('crops', crops.shape)
    # crops = crops.reshape(B,N,C,PH,PW)

    
    # crops = []
    # for b in range(B):
    #     crop_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW))
    #     print('crop_b', crop_b.shape)
    #     crops.append(crop_b)
    crops = torch.stack(crops, dim=0)
        
    # print('crops', crops.shape)
    # boxlist_list = boxlist_pt.unbind(0)
    # print('rgb_crop', rgb_crop.shape)

    return crops


# def get_boxlist_from_centroid_and_size(cy, cx, h, w, clip=True):
#     # cy,cx are both B,N
#     ymin = cy - h/2
#     ymax = cy + h/2
#     xmin = cx - w/2
#     xmax = cx + w/2

#     box = torch.stack([ymin, xmin, ymax, xmax], dim=-1)
#     if clip:
#         box = torch.clamp(box, 0, 1)
#     return box


def get_boxlist_from_centroid_and_size(cy, cx, h, w):#, clip=False):
    # cy,cx are the same shape
    ymin = cy - h/2
    ymax = cy + h/2
    xmin = cx - w/2
    xmax = cx + w/2

    # if clip:
    #     ymin = torch.clamp(ymin, 0, H-1)
    #     ymax = torch.clamp(ymax, 0, H-1)
    #     xmin = torch.clamp(xmin, 0, W-1)
    #     xmax = torch.clamp(xmax, 0, W-1)
    
    box = torch.stack([ymin, xmin, ymax, xmax], dim=-1)
    return box


def get_box2d_from_mask(mask, normalize=False):
    # mask is B, 1, H, W

    B, C, H, W = mask.shape
    assert(C==1)
    xy = utils.basic.gridcloud2d(B, H, W, norm=False, device=mask.device) # B, H*W, 2

    box = torch.zeros((B, 4), dtype=torch.float32, device=mask.device)
    for b in range(B):
        xy_b = xy[b] # H*W, 2
        mask_b = mask[b].reshape(H*W)
        xy_ = xy_b[mask_b > 0]
        x_ = xy_[:,0]
        y_ = xy_[:,1]
        ymin = torch.min(y_)
        ymax = torch.max(y_)
        xmin = torch.min(x_)
        xmax = torch.max(x_)
        box[b] = torch.stack([ymin, xmin, ymax, xmax], dim=0)
    if normalize:
        box = normalize_boxlist2d(box.unsqueeze(1), H, W).squeeze(1)
    return box

def convert_box2d_to_intrinsics(box2d, pix_T_cam, H, W, use_image_aspect_ratio=True, mult_padding=1.0):
    # box2d is B x 4, with ymin, xmin, ymax, xmax in normalized coords
    # ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1)
    # H, W is the original size of the image
    # mult_padding is relative to object size in pixels

    # i assume we're rendering an image the same size as the original (H, W)

    if not mult_padding==1.0:
        y, x = get_centroid_from_box2d(box2d)
        h, w = get_size_from_box2d(box2d)
        box2d = get_box2d_from_centroid_and_size(
            y, x, h*mult_padding, w*mult_padding, clip=False)
        
    if use_image_aspect_ratio:
        h, w = get_size_from_box2d(box2d)
        y, x = get_centroid_from_box2d(box2d)

        # note h,w are relative right now
        # we need to undo this, to see the real ratio

        h = h*float(H)
        w = w*float(W)
        box_ratio = h/w
        im_ratio = H/float(W)

        # print('box_ratio:', box_ratio)
        # print('im_ratio:', im_ratio)

        if box_ratio >= im_ratio:
            w = h/im_ratio
            # print('setting w:', h/im_ratio)
        else:
            h = w*im_ratio
            # print('setting h:', w*im_ratio)
            
        box2d = get_box2d_from_centroid_and_size(
            y, x, h/float(H), w/float(W), clip=False)

    assert(h > 1e-4)
    assert(w > 1e-4)
        
    ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1)

    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)

    # the topleft of the new image will now have a different offset from the center of projection
    
    new_x0 = x0 - xmin*W
    new_y0 = y0 - ymin*H

    pix_T_cam = pack_intrinsics(fx, fy, new_x0, new_y0)
    # this alone will give me an image in original resolution,
    # with its topleft at the box corner

    box_h, box_w = get_size_from_box2d(box2d)
    # these are normalized, and shaped B. (e.g., [0.4], [0.3])

    # we are going to scale the image by the inverse of this,
    # since we are zooming into this area

    sy = 1./box_h
    sx = 1./box_w

    pix_T_cam = scale_intrinsics(pix_T_cam, sx, sy)
    return pix_T_cam, box2d

def pixels2camera(x,y,z,fx,fy,x0,y0):
    # x and y are locations in pixel coordinates, z is a depth in meters
    # they can be images or pointclouds
    # fx, fy, x0, y0 are camera intrinsics
    # returns xyz, sized B x N x 3

    B = x.shape[0]
    
    fx = torch.reshape(fx, [B,1])
    fy = torch.reshape(fy, [B,1])
    x0 = torch.reshape(x0, [B,1])
    y0 = torch.reshape(y0, [B,1])

    x = torch.reshape(x, [B,-1])
    y = torch.reshape(y, [B,-1])
    z = torch.reshape(z, [B,-1])
    
    # unproject
    x = (z/fx)*(x-x0)
    y = (z/fy)*(y-y0)
    
    xyz = torch.stack([x,y,z], dim=2)
    # B x N x 3
    return xyz

def camera2pixels(xyz, pix_T_cam):
    # xyz is shaped B x H*W x 3
    # returns xy, shaped B x H*W x 2
    
    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    x, y, z = torch.unbind(xyz, dim=-1)
    B = list(z.shape)[0]

    fx = torch.reshape(fx, [B,1])
    fy = torch.reshape(fy, [B,1])
    x0 = torch.reshape(x0, [B,1])
    y0 = torch.reshape(y0, [B,1])
    x = torch.reshape(x, [B,-1])
    y = torch.reshape(y, [B,-1])
    z = torch.reshape(z, [B,-1])

    EPS = 1e-4
    z = torch.clamp(z, min=EPS)
    x = (x*fx)/z + x0
    y = (y*fy)/z + y0
    xy = torch.stack([x, y], dim=-1)
    return xy

def depth2pointcloud(z, pix_T_cam):
    B, C, H, W = list(z.shape)
    device = z.device
    y, x = utils.basic.meshgrid2d(B, H, W, device=device)
    z = torch.reshape(z, [B, H, W])
    fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
    xyz = pixels2camera(x, y, z, fx, fy, x0, y0)
    return xyz