File size: 6,014 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import glob
from tqdm import tqdm

# Define the merged dataset metadata dictionary
dataset_metadata = {
    'davis': {
        'img_path': "data/davis/DAVIS/JPEGImages/480p",
        'mask_path': "data/davis/DAVIS/masked_images/480p",
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq),
        'gt_traj_func': lambda img_path, anno_path, seq: None,
        'traj_format': None,
        'seq_list': ["blackswan", "camel", "car-shadow", "dog", "horsejump-high", "motocross-jump", "parkour", "soapbox"],
        'full_seq': False,
        'mask_path_seq_func': lambda mask_path, seq: os.path.join(mask_path, seq),
        'skip_condition': None,
        'process_func': None,  # Not used in mono depth estimation
    },
    'kitti': {
        'img_path': "data/kitti/depth_selection/val_selection_cropped/image_gathered",  # Default path
        'mask_path': None,
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq),
        'gt_traj_func': lambda img_path, anno_path, seq: None,
        'traj_format': None,
        'seq_list': None,
        'full_seq': True,
        'mask_path_seq_func': lambda mask_path, seq: None,
        'skip_condition': None,
        'process_func': lambda args, img_path: process_kitti(args, img_path),
    },
    'bonn': {
        'img_path': "data/bonn/rgbd_bonn_dataset",
        'mask_path': None,
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, f'rgbd_bonn_{seq}', 'rgb_110'),
        'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(img_path, f'rgbd_bonn_{seq}', 'groundtruth_110.txt'),
        'traj_format': 'tum',
        'seq_list': ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"],
        'full_seq': False,
        'mask_path_seq_func': lambda mask_path, seq: None,
        'skip_condition': None,
        'process_func': lambda args, img_path: process_bonn(args, img_path),
    },
    'nyu': {
        'img_path': "data/nyu-v2/val/nyu_images",
        'mask_path': None,
        'process_func': lambda args, img_path: process_nyu(args, img_path),
    },
    'scannet': {
        'img_path': "data/scannetv2",
        'mask_path': None,
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq, 'color_90'),
        'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(img_path, seq, 'pose_90.txt'),
        'traj_format': 'replica',
        'seq_list': None,
        'full_seq': True,
        'mask_path_seq_func': lambda mask_path, seq: None,
        'skip_condition': lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
        'process_func': lambda args, img_path: process_scannet(args, img_path),
    },
    'tum': {
        'img_path': "data/tum",
        'mask_path': None,
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq, 'rgb_90'),
        'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(img_path, seq, 'groundtruth_90.txt'),
        'traj_format': 'tum',
        'seq_list': None,
        'full_seq': True,
        'mask_path_seq_func': lambda mask_path, seq: None,
        'skip_condition': None,
        'process_func': None,
    },
    'sintel': {
        'img_path': "data/sintel/training/final",
        'anno_path': "data/sintel/training/camdata_left",
        'mask_path': None,
        'dir_path_func': lambda img_path, seq: os.path.join(img_path, seq),
        'gt_traj_func': lambda img_path, anno_path, seq: os.path.join(anno_path, seq),
        'traj_format': None,
        'seq_list': ["alley_2", "ambush_4", "ambush_5", "ambush_6", "cave_2", "cave_4", "market_2",
                     "market_5", "market_6", "shaman_3", "sleeping_1", "sleeping_2", "temple_2", "temple_3"],
        'full_seq': False,
        'mask_path_seq_func': lambda mask_path, seq: None,
        'skip_condition': None,
        'process_func': lambda args, img_path: process_sintel(args, img_path),
    },
}

# Define processing functions for each dataset
def process_kitti(args, img_path):
    for dir in tqdm(sorted(glob.glob(f'{img_path}/*'))):
        filelist = sorted(glob.glob(f'{dir}/*.png'))
        save_dir = f'{args.output_dir}/{os.path.basename(dir)}'
        yield filelist, save_dir

def process_bonn(args, img_path):
    if args.full_seq:
        for dir in tqdm(sorted(glob.glob(f'{img_path}/*/'))):
            filelist = sorted(glob.glob(f'{dir}/rgb/*.png'))
            save_dir = f'{args.output_dir}/{os.path.basename(os.path.dirname(dir))}'
            yield filelist, save_dir
    else:
        seq_list = ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"] if args.seq_list is None else args.seq_list
        for seq in tqdm(seq_list):
            filelist = sorted(glob.glob(f'{img_path}/rgbd_bonn_{seq}/rgb_110/*.png'))
            save_dir = f'{args.output_dir}/{seq}'
            yield filelist, save_dir

def process_nyu(args, img_path):
    filelist = sorted(glob.glob(f'{img_path}/*.png'))
    save_dir = f'{args.output_dir}'
    yield filelist, save_dir

def process_scannet(args, img_path):
    seq_list = sorted(glob.glob(f'{img_path}/*'))
    for seq in tqdm(seq_list):
        filelist = sorted(glob.glob(f'{seq}/color_90/*.jpg'))
        save_dir = f'{args.output_dir}/{os.path.basename(seq)}'
        yield filelist, save_dir

def process_sintel(args, img_path):
    if args.full_seq:
        for dir in tqdm(sorted(glob.glob(f'{img_path}/*/'))):
            filelist = sorted(glob.glob(f'{dir}/*.png'))
            save_dir = f'{args.output_dir}/{os.path.basename(os.path.dirname(dir))}'
            yield filelist, save_dir
    else:
        seq_list = ["alley_2", "ambush_4", "ambush_5", "ambush_6", "cave_2", "cave_4", "market_2",
                    "market_5", "market_6", "shaman_3", "sleeping_1", "sleeping_2", "temple_2", "temple_3"]
        for seq in tqdm(seq_list):
            filelist = sorted(glob.glob(f'{img_path}/{seq}/*.png'))
            save_dir = f'{args.output_dir}/{seq}'
            yield filelist, save_dir