File size: 28,680 Bytes
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fd7ba
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# --------------------------------------------------------
# training code for DUSt3R
# --------------------------------------------------------
import os
os.environ['OMP_NUM_THREADS'] = '4' # will affect the performance of pairwise prediction
import argparse
import datetime
import json
import numpy as np
import sys
import time
import math
import wandb
from collections import defaultdict
from pathlib import Path
from typing import Sized

import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
torch.backends.cuda.matmul.allow_tf32 = True  # for gpu >= Ampere and pytorch >= 1.12

from dust3r.model import AsymmetricCroCo3DStereo, inf  # noqa: F401, needed when loading the model
from dust3r.datasets import get_data_loader  # noqa
from dust3r.losses import *  # noqa: F401, needed when loading the model
from dust3r.inference import loss_of_one_batch, visualize_results, visualize_results_mmask  # noqa

from dust3r.pose_eval import eval_pose_estimation
from dust3r.depth_eval import eval_mono_depth_estimation

# from demo import get_3D_model_from_scene
import dust3r.utils.path_to_croco  # noqa: F401
import croco.utils.misc as misc  # noqa
from croco.utils.misc import NativeScalerWithGradNormCount as NativeScaler  # noqa
import PIL.Image as Image
from dust3r.cloud_opt.motion_mask_from_raft import get_motion_mask_from_pairs

def get_args_parser():
    parser = argparse.ArgumentParser('DUST3R training', add_help=False)
    # model and criterion
    parser.add_argument('--model', default="AsymmetricCroCo3DStereo(pos_embed='RoPE100', patch_embed_cls='ManyAR_PatchEmbed', \
                        img_size=(512, 512), head_type='dpt', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), \
                        enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, freeze='encoder')",
                        type=str, help="string containing the model to build")
    parser.add_argument('--pretrained', default=None, help='path of a starting checkpoint')
    parser.add_argument('--train_criterion', default="ConfLoss(Regr3D(L21, norm_mode='avg_dis'), alpha=0.2)",
                        type=str, help="train criterion")
    parser.add_argument('--test_criterion', default=None, type=str, help="test criterion")

    # dataset
    parser.add_argument('--train_dataset', default='[None]', type=str, help="training set")
    parser.add_argument('--test_dataset', default='[None]', type=str, help="testing set")

    # training
    parser.add_argument('--seed', default=0, type=int, help="Random seed")
    parser.add_argument('--batch_size', default=64, type=int,
                        help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
    parser.add_argument('--test_batch_size', default=64, type=int,
                        help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus")
    
    parser.add_argument('--accum_iter', default=1, type=int,
                        help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)")
    parser.add_argument('--epochs', default=800, type=int, help="Maximum number of epochs for the scheduler")
    parser.add_argument('--weight_decay', type=float, default=0.05, help="weight decay (default: 0.05)")
    parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')
    parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
    parser.add_argument('--amp', type=int, default=0,
                        choices=[0, 1], help="Use Automatic Mixed Precision for pretraining")
    parser.add_argument("--cudnn_benchmark", action='store_true', default=False,
                        help="set cudnn.benchmark = False")
    parser.add_argument("--eval_only", action='store_true', default=False)
    parser.add_argument("--fixed_eval_set", action='store_true', default=False)
    parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint (default: none)')

    # others
    parser.add_argument('--num_workers', default=8, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--eval_freq', type=int, default=5, help='Test loss evaluation frequency')
    parser.add_argument('--save_freq', default=1, type=int,
                        help='frequence (number of epochs) to save checkpoint in checkpoint-last.pth')
    parser.add_argument('--keep_freq', default=5, type=int,
                        help='frequence (number of epochs) to save checkpoint in checkpoint-%d.pth')
    parser.add_argument('--print_freq', default=20, type=int,
                        help='frequence (number of iterations) to print infos while training')
    parser.add_argument('--wandb', action='store_true', default=False, help='use wandb for logging')
    parser.add_argument('--num_save_visual', default=4, type=int, help='number of visualizations to save')
    
    # switch mode for train / eval pose / eval depth
    parser.add_argument('--mode', default='train', type=str, help='train / eval_pose / eval_depth')

    # for pose eval
    
    parser.add_argument('--threshold', default=0.5, type=float, help='threshold for motion mask')
    parser.add_argument('--pose_eval_freq', default=25, type=int, help='pose evaluation frequency')
    parser.add_argument('--pose_eval_stride', default=1, type=int, help='stride for pose evaluation')
    parser.add_argument('--scene_graph_type', default='swinstride-5-noncyclic', type=str, help='scene graph window size')
    parser.add_argument('--save_best_pose', action='store_true', default=False, help='save best pose')
    parser.add_argument('--n_iter', default=300, type=int, help='number of iterations for pose optimization')
    parser.add_argument('--save_pose_qualitative', action='store_true', default=False, help='save qualitative pose results')
    parser.add_argument('--temporal_smoothing_weight', default=0.01, type=float, help='temporal smoothing weight for pose optimization')
    parser.add_argument('--not_shared_focal', action='store_true', default=False, help='use shared focal length for pose optimization')
    parser.add_argument('--use_gt_focal', action='store_true', default=False, help='use ground truth focal length for pose optimization')
    parser.add_argument('--pose_schedule', default='linear', type=str, help='pose optimization schedule')
    parser.add_argument('--flow_loss_weight', default=0.01, type=float, help='flow loss weight for pose optimization')
    parser.add_argument('--cananical_space_loss_weight', default=1, type=float, help='cananical_space_loss_weight for pose optimization')
    parser.add_argument('--flow_loss_fn', default='smooth_l1', type=str, help='flow loss type for pose optimization')
    parser.add_argument('--use_gt_mask', action='store_true', default=False, help='use gt mask for pose optimization, for sintel/davis')

    parser.add_argument('--use_pred_mask', action='store_true', default=False, help='use nn predicted mask for pose optimization')
    parser.add_argument('--evaluate_davis', action='store_true', default=False, help='evaluate davis on first 50 frames')
    parser.add_argument('--not_batchify', action='store_true', default=False, help='Use non batchify mode for global optimization')
    parser.add_argument('--dir_path', type=str, help='path to custom dataset for pose evaluation')

    
    parser.add_argument('--motion_mask_thre', default=0.35, type=float, help='motion mask threshold for pose optimization')
    parser.add_argument('--sam2_mask_refine', action='store_true', default=False, help='use sam2 mask refine for the motion for pose optimization')
    parser.add_argument('--flow_loss_start_epoch', default=0.1, type=float, help='start epoch for flow loss')
    parser.add_argument('--flow_loss_thre', default=20, type=float, help='threshold for flow loss')
    parser.add_argument('--pxl_thresh', default=50.0, type=float, help='threshold for flow loss')
    parser.add_argument('--depth_regularize_weight', default=0.0, type=float, help='depth regularization weight for pose optimization')
    parser.add_argument('--translation_weight', default=1, type=float, help='translation weight for pose optimization')
    parser.add_argument('--silent', action='store_true', default=False, help='silent mode for pose evaluation')
    parser.add_argument('--full_seq', action='store_true', default=False, help='use full sequence for pose evaluation')
    parser.add_argument('--seq_list', nargs='+', default=None, help='list of sequences for pose evaluation')


    parser.add_argument('--eval_dataset', type=str, default='sintel', 
                    choices=['davis', 'kitti', 'bonn', 'scannet', 'tum', 'nyu', 'sintel'], 
                    help='choose dataset for pose evaluation')

    # for monocular depth eval
    parser.add_argument('--no_crop', action='store_true', default=False, help='do not crop the image for monocular depth evaluation')

    # output dir
    parser.add_argument('--output_dir', default='./results/tmp', type=str, help="path where to save the output")
    return parser

def load_model(args, device):
    # model
    print('Loading model: {:s}'.format(args.model))

    model = eval(args.model)

    if args.pretrained and not args.resume:
        if os.path.isfile(args.pretrained):
            # load from pth file
            print('Loading pretrained: ', args.pretrained)
            ckpt = torch.load(args.pretrained, map_location=device, weights_only=False)
            print(model.load_state_dict(ckpt['model'], strict=False))
            del ckpt  # in case it occupies memory
            
        else:
            # load from huggingface
            print('Loading pretrained from huggingface: ', args.pretrained)
            model = model.from_pretrained(args.pretrained)
    
    model.to(device)
    model_without_ddp = model

    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True)
        model_without_ddp = model.module

    return model, model_without_ddp

def train(args):
    misc.init_distributed_mode(args)
    global_rank = misc.get_rank()
    world_size = misc.get_world_size()
    # if main process, init wandb
    if args.wandb and misc.is_main_process():
        wandb.init(name=args.output_dir.split('/')[-1], 
                   project='dust3r', 
                   config=args, 
                   sync_tensorboard=True,
                   dir=args.output_dir)

    print("output_dir: " + args.output_dir)
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)

    # auto resume if not specified
    if args.resume is None:
        last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth')
        if os.path.isfile(last_ckpt_fname) and (not args.eval_only): args.resume = last_ckpt_fname

    print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(', ', ',\n'))

    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)

    # fix the seed
    seed = args.seed + misc.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)

    cudnn.benchmark = args.cudnn_benchmark
    model, model_without_ddp = load_model(args, device)

    if not args.eval_only:
        # training dataset and loader
        print('Building train dataset {:s}'.format(args.train_dataset))
        #  dataset and loader
        data_loader_train = build_dataset(args.train_dataset, args.batch_size, args.num_workers, test=False)
        print(f'>> Creating train criterion = {args.train_criterion}')
        train_criterion = eval(args.train_criterion).to(device)
    
    print('Building test dataset {:s}'.format(args.train_dataset))
    data_loader_test = {}
    for dataset in args.test_dataset.split('+'):
        testset = build_dataset(dataset, args.test_batch_size, args.num_workers, test=True)
        print(args.test_dataset)
        name_testset = dataset.split('(')[0]
        if getattr(testset.dataset.dataset, 'strides', None) is not None:
            name_testset += f'_stride{testset.dataset.dataset.strides}'
        data_loader_test[name_testset] = testset
    print(f'>> Creating test criterion = {args.test_criterion or args.train_criterion}')
    test_criterion = eval(args.test_criterion or args.criterion).to(device)

    eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
    if args.lr is None:  # only base_lr is specified
        args.lr = args.blr * eff_batch_size / 256
    print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
    print("actual lr: %.2e" % args.lr)
    print("accumulate grad iterations: %d" % args.accum_iter)
    print("effective batch size: %d" % eff_batch_size)

    # following timm: set wd as 0 for bias and norm layers
    param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay)
    optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
    # print(optimizer)
    loss_scaler = NativeScaler()

    def write_log_stats(epoch, train_stats, test_stats):
        if misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            gathered_test_stats = {}
            log_stats = dict(epoch=epoch, **{f'train_{k}': v for k, v in train_stats.items()})

            for test_name, testset in data_loader_test.items():

                if test_name not in test_stats:
                    continue

                if getattr(testset.dataset.dataset, 'strides', None) is not None:
                    original_test_name = test_name.split('_stride')[0]
                    if original_test_name not in gathered_test_stats.keys():
                        gathered_test_stats[original_test_name] = []
                    gathered_test_stats[original_test_name].append(test_stats[test_name])

                log_stats.update({test_name + '_' + k: v for k, v in test_stats[test_name].items()})

            if len(gathered_test_stats) > 0:
                for original_test_name, stride_stats in gathered_test_stats.items():
                    if len(stride_stats) > 1:
                        stride_stats = {k: np.mean([x[k] for x in stride_stats]) for k in stride_stats[0]}
                        log_stats.update({original_test_name + '_stride_mean_' + k: v for k, v in stride_stats.items()})
                        if args.wandb:
                            log_dict = {original_test_name + '_stride_mean_' + k: v for k, v in stride_stats.items()}
                            log_dict.update({'epoch': epoch})
                            wandb.log(log_dict)

            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    def save_model(epoch, fname, best_so_far, best_pose_ate_sofar=None):
        misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer,
                        loss_scaler=loss_scaler, epoch=epoch, fname=fname, best_so_far=best_so_far, best_pose_ate_sofar=best_pose_ate_sofar)

    best_so_far, best_pose_ate_sofar = misc.load_model(args=args, model_without_ddp=model_without_ddp,
                                  optimizer=optimizer, loss_scaler=loss_scaler)
    if best_so_far is None:
        best_so_far = float('inf')
    if best_pose_ate_sofar is None:
        best_pose_ate_sofar = float('inf')
    if global_rank == 0 and args.output_dir is not None:
        log_writer = SummaryWriter(log_dir=args.output_dir)
    else:
        log_writer = None

    print(f"Start training for {args.epochs} epochs")
    start_time = time.time()
    train_stats = test_stats = {}
    for epoch in range(args.start_epoch, args.epochs + 1):

        # Test on multiple datasets
        new_best = False
        new_pose_best = False
        already_saved = False
        if (epoch > args.start_epoch and args.eval_freq > 0 and epoch % args.eval_freq == 0) or args.eval_only:
            test_stats = {}
            for test_name, testset in data_loader_test.items():
                print(f'Testing on {test_name}...')
                stats = test_one_epoch(model, test_criterion, testset,
                                       device, epoch, log_writer=log_writer, args=args, prefix=test_name)
                test_stats[test_name] = stats

                # Save best of all
                if stats['loss_med'] < best_so_far:
                    best_so_far = stats['loss_med']
                    new_best = True
            # Ensure that eval_pose_estimation is only run on the main process
            if args.pose_eval_freq>0 and (epoch % args.pose_eval_freq==0 or args.eval_only):
                ate_mean, rpe_trans_mean, rpe_rot_mean, outfile_list, bug = eval_pose_estimation(args, model, device, save_dir=f'{args.output_dir}/{epoch}')
                print(f'ATE mean: {ate_mean}, RPE trans mean: {rpe_trans_mean}, RPE rot mean: {rpe_rot_mean}')
                
                # Optionally log the results to wandb
                if args.wandb and misc.is_main_process():
                    wandb_dict = {
                        'epoch': epoch,
                        'ATE mean': ate_mean,
                        'RPE trans mean': rpe_trans_mean,
                        'RPE rot mean': rpe_rot_mean,
                    }
                    if args.save_pose_qualitative:
                        for outfile in outfile_list:
                            wandb_dict[outfile.split('/')[-1]] = wandb.Object3D(open(outfile))
                    
                    wandb.log(wandb_dict)

                if ate_mean < best_pose_ate_sofar and not bug: # if the pose estimation is better, and w/o any error
                    best_pose_ate_sofar = ate_mean
                    new_pose_best = True

            # Synchronize all processes to ensure eval_pose_estimation is completed
            try:
                torch.distributed.barrier()
            except:
                pass

        # Save more stuff
        write_log_stats(epoch, train_stats, test_stats)

        if args.eval_only:
            exit(0)

        if epoch > args.start_epoch:
            if args.keep_freq and epoch % args.keep_freq == 0:
                save_model(epoch - 1, str(epoch), best_so_far, best_pose_ate_sofar)
                already_saved = True
            if new_best:
                save_model(epoch - 1, 'best', best_so_far, best_pose_ate_sofar)
                already_saved = True
            if new_pose_best and args.save_best_pose:
                save_model(epoch - 1, 'best_pose', best_so_far, best_pose_ate_sofar)
                already_saved = True

        # Save immediately the last checkpoint
        if epoch > args.start_epoch:
            save_model(epoch - 1, 'last', best_so_far, best_pose_ate_sofar)

        if epoch >= args.epochs:
            break  # exit after writing last test to disk

        # Train
        train_stats = train_one_epoch(
            model, train_criterion, data_loader_train,
            optimizer, device, epoch, loss_scaler,
            log_writer=log_writer,
            args=args)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))

    save_final_model(args, args.epochs, model_without_ddp, best_so_far=best_so_far)


def save_final_model(args, epoch, model_without_ddp, best_so_far=None):
    output_dir = Path(args.output_dir)
    checkpoint_path = output_dir / 'checkpoint-final.pth'
    to_save = {
        'args': args,
        'model': model_without_ddp if isinstance(model_without_ddp, dict) else model_without_ddp.cpu().state_dict(),
        'epoch': epoch
    }
    if best_so_far is not None:
        to_save['best_so_far'] = best_so_far
    print(f'>> Saving model to {checkpoint_path} ...')
    misc.save_on_master(to_save, checkpoint_path)


def build_dataset(dataset, batch_size, num_workers, test=False):
    split = ['Train', 'Test'][test]
    print(f'Building {split} Data loader for dataset: ', dataset)
    loader = get_data_loader(dataset,
                             batch_size=batch_size,
                             num_workers=num_workers,
                             pin_mem=True,
                             shuffle=not (test),
                             drop_last=not (test))

    print(f"{split} dataset length: ", len(loader))
    return loader


def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Sized, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, loss_scaler,
                    args,
                    log_writer=None):
    assert torch.backends.cuda.matmul.allow_tf32 == True

    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    accum_iter = args.accum_iter

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))

    if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
        data_loader.dataset.set_epoch(epoch)
    if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
        data_loader.sampler.set_epoch(epoch)

    optimizer.zero_grad()

    for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
        epoch_f = epoch + data_iter_step / len(data_loader)

        # we use a per iteration (instead of per epoch) lr scheduler
        if data_iter_step % accum_iter == 0:
            misc.adjust_learning_rate(optimizer, epoch_f, args)
        
        batch_result = loss_of_one_batch(batch, model, criterion, device,
                                       symmetrize_batch=True,
                                       use_amp=bool(args.amp))
        loss, loss_details = batch_result['loss']  # criterion returns two values
        loss_value = float(loss)

        if (data_iter_step % max((len(data_loader) // args.num_save_visual), 1) == 0 or data_iter_step == 0) and misc.is_main_process() :
            print(f'Saving visualizations for data_iter_step {data_iter_step}...')
            save_dir = f'{args.output_dir}/{epoch}'
            Path(save_dir).mkdir(parents=True, exist_ok=True)
            view1, view2, pred1, pred2 = batch_result['view1'], batch_result['view2'], batch_result['pred1'], batch_result['pred2']
            gt_rgb_mmask1, gt_rgb_mmask2 = visualize_results_mmask(view1, view2, pred1, pred2, save_dir=save_dir, visualize_type='gt')
            pred_rgb_mmask1, pred_rgb_mmask2 = visualize_results_mmask(view1, view2, pred1, pred2, save_dir=save_dir, visualize_type='pred')
            if args.wandb:
                wandb.log({
                    'epoch': epoch,

                    'train_gt_mmask_1': wandb.Image(gt_rgb_mmask1),
                    'train_gt_mmask_2': wandb.Image(gt_rgb_mmask2),

                    'train_pred_mmask_1': wandb.Image(pred_rgb_mmask1),
                    'train_pred_mmask_2': wandb.Image(pred_rgb_mmask2)
                })

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value), force=True)
            sys.exit(1)

        loss /= accum_iter
        loss_scaler(loss, optimizer, parameters=model.parameters(),
                    update_grad=(data_iter_step + 1) % accum_iter == 0)
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        del loss
        del batch

        lr = optimizer.param_groups[0]["lr"]
        metric_logger.update(epoch=epoch_f)
        metric_logger.update(lr=lr)
        metric_logger.update(loss=loss_value, **loss_details)

        if (data_iter_step + 1) % accum_iter == 0 and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0:
            loss_value_reduce = misc.all_reduce_mean(loss_value)  # MUST BE EXECUTED BY ALL NODES
            if log_writer is None:
                continue
            """ We use epoch_1000x as the x-axis in tensorboard.
            This calibrates different curves when batch size changes.
            """
            epoch_1000x = int(epoch_f * 1000)
            log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
            log_writer.add_scalar('train_lr', lr, epoch_1000x)
            log_writer.add_scalar('train_iter', epoch_1000x, epoch_1000x)
            for name, val in loss_details.items():
                log_writer.add_scalar('train_' + name, val, epoch_1000x)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def test_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                   data_loader: Sized, device: torch.device, epoch: int,
                   args, log_writer=None, prefix='test'):

    model.eval()
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.meters = defaultdict(lambda: misc.SmoothedValue(window_size=9**9))
    header = 'Test Epoch: [{}]'.format(epoch)

    if log_writer is not None:
        print('log_dir: {}'.format(log_writer.log_dir))
    
    if hasattr(data_loader, 'dataset') and hasattr(data_loader.dataset, 'set_epoch'):
        data_loader.dataset.set_epoch(epoch) if not args.fixed_eval_set else data_loader.dataset.set_epoch(0)
    if hasattr(data_loader, 'sampler') and hasattr(data_loader.sampler, 'set_epoch'):
        data_loader.sampler.set_epoch(epoch) if not args.fixed_eval_set else data_loader.sampler.set_epoch(0)

    for idx, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
        
        batch_result = loss_of_one_batch(batch, model, criterion, device,
                                       symmetrize_batch=True,
                                       use_amp=bool(args.amp))
        loss_tuple = batch_result['loss']
        loss_value, loss_details = loss_tuple  # criterion returns two values
        metric_logger.update(loss=float(loss_value), **loss_details)

        if args.num_save_visual>0 and (idx % max((len(data_loader) // args.num_save_visual), 1) == 0) and misc.is_main_process() : # save visualizations

            save_dir = f'{args.output_dir}/{epoch}'
            Path(save_dir).mkdir(parents=True, exist_ok=True)
            view1, view2, pred1, pred2 = batch_result['view1'], batch_result['view2'], batch_result['pred1'], batch_result['pred2']

            gt_rgb_mmask1, gt_rgb_mmask2 = visualize_results_mmask(view1, view2, pred1, pred2, save_dir=save_dir, visualize_type='gt')
            pred_rgb_mmask1, pred_rgb_mmask2 = visualize_results_mmask(view1, view2, pred1, pred2, save_dir=save_dir, visualize_type='pred')
            if args.wandb:
                wandb.log({
                    'epoch': epoch,
                    f'{prefix}_test_gt_mmask_1': wandb.Image(gt_rgb_mmask1),
                    f'{prefix}_test_gt_mmask_2': wandb.Image(gt_rgb_mmask2),

                    f'{prefix}_test_pred_mmask_1': wandb.Image(pred_rgb_mmask1),
                    f'{prefix}_test_pred_mmask_2': wandb.Image(pred_rgb_mmask2)
                })

            


    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)

    aggs = [('avg', 'global_avg'), ('med', 'median')]
    results = {f'{k}_{tag}': getattr(meter, attr) for k, meter in metric_logger.meters.items() for tag, attr in aggs}

    if log_writer is not None:
        for name, val in results.items():
            log_writer.add_scalar(prefix + '_' + name, val, 1000 * epoch)

    return results