|
|
|
|
|
import os |
|
import numpy as np |
|
|
|
import utils.utils_poses.ATE.trajectory_utils as tu |
|
import utils.utils_poses.ATE.transformations as tf |
|
|
|
|
|
def compute_relative_error(p_es, q_es, p_gt, q_gt, T_cm, dist, max_dist_diff, |
|
accum_distances=[], |
|
scale=1.0): |
|
|
|
if len(accum_distances) == 0: |
|
accum_distances = tu.get_distance_from_start(p_gt) |
|
comparisons = tu.compute_comparison_indices_length( |
|
accum_distances, dist, max_dist_diff) |
|
|
|
n_samples = len(comparisons) |
|
print('number of samples = {0} '.format(n_samples)) |
|
if n_samples < 2: |
|
print("Too few samples! Will not compute.") |
|
return np.array([]), np.array([]), np.array([]), np.array([]), np.array([]),\ |
|
np.array([]), np.array([]) |
|
|
|
T_mc = np.linalg.inv(T_cm) |
|
errors = [] |
|
for idx, c in enumerate(comparisons): |
|
if not c == -1: |
|
T_c1 = tu.get_rigid_body_trafo(q_es[idx, :], p_es[idx, :]) |
|
T_c2 = tu.get_rigid_body_trafo(q_es[c, :], p_es[c, :]) |
|
T_c1_c2 = np.dot(np.linalg.inv(T_c1), T_c2) |
|
T_c1_c2[:3, 3] *= scale |
|
|
|
T_m1 = tu.get_rigid_body_trafo(q_gt[idx, :], p_gt[idx, :]) |
|
T_m2 = tu.get_rigid_body_trafo(q_gt[c, :], p_gt[c, :]) |
|
T_m1_m2 = np.dot(np.linalg.inv(T_m1), T_m2) |
|
|
|
T_m1_m2_in_c1 = np.dot(T_cm, np.dot(T_m1_m2, T_mc)) |
|
T_error_in_c2 = np.dot(np.linalg.inv(T_m1_m2_in_c1), T_c1_c2) |
|
T_c2_rot = np.eye(4) |
|
T_c2_rot[0:3, 0:3] = T_c2[0:3, 0:3] |
|
T_error_in_w = np.dot(T_c2_rot, np.dot( |
|
T_error_in_c2, np.linalg.inv(T_c2_rot))) |
|
errors.append(T_error_in_w) |
|
|
|
error_trans_norm = [] |
|
error_trans_perc = [] |
|
error_yaw = [] |
|
error_gravity = [] |
|
e_rot = [] |
|
e_rot_deg_per_m = [] |
|
for e in errors: |
|
tn = np.linalg.norm(e[0:3, 3]) |
|
error_trans_norm.append(tn) |
|
error_trans_perc.append(tn / dist * 100) |
|
ypr_angles = tf.euler_from_matrix(e, 'rzyx') |
|
e_rot.append(tu.compute_angle(e)) |
|
error_yaw.append(abs(ypr_angles[0])*180.0/np.pi) |
|
error_gravity.append( |
|
np.sqrt(ypr_angles[1]**2+ypr_angles[2]**2)*180.0/np.pi) |
|
e_rot_deg_per_m.append(e_rot[-1] / dist) |
|
return errors, np.array(error_trans_norm), np.array(error_trans_perc),\ |
|
np.array(error_yaw), np.array(error_gravity), np.array(e_rot),\ |
|
np.array(e_rot_deg_per_m) |
|
|
|
|
|
def compute_absolute_error(p_es_aligned, q_es_aligned, p_gt, q_gt): |
|
e_trans_vec = (p_gt-p_es_aligned) |
|
e_trans = np.sqrt(np.sum(e_trans_vec**2, 1)) |
|
|
|
|
|
|
|
e_rot = np.zeros((len(e_trans,))) |
|
e_ypr = np.zeros(np.shape(p_es_aligned)) |
|
for i in range(np.shape(p_es_aligned)[0]): |
|
R_we = tf.matrix_from_quaternion(q_es_aligned[i, :]) |
|
R_wg = tf.matrix_from_quaternion(q_gt[i, :]) |
|
e_R = np.dot(R_we, np.linalg.inv(R_wg)) |
|
e_ypr[i, :] = tf.euler_from_matrix(e_R, 'rzyx') |
|
e_rot[i] = np.rad2deg(np.linalg.norm(tf.logmap_so3(e_R[:3, :3]))) |
|
|
|
motion_gt = np.diff(p_gt, 0) |
|
motion_es = np.diff(p_es_aligned, 0) |
|
dist_gt = np.sqrt(np.sum(np.multiply(motion_gt, motion_gt), 1)) |
|
dist_es = np.sqrt(np.sum(np.multiply(motion_es, motion_es), 1)) |
|
e_scale_perc = np.abs((np.divide(dist_es, dist_gt)-1.0) * 100) |
|
|
|
return e_trans, e_trans_vec, e_rot, e_ypr, e_scale_perc |
|
|