|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import cv2 |
|
|
|
from dust3r.utils.geometry import inv, geotrf, depthmap_to_absolute_camera_coordinates |
|
from dust3r.post_process import estimate_focal_knowing_depth |
|
|
|
|
|
def camera_parameter_estimation(view_n, view_m, pred_n, pred_m, im_conf): |
|
|
|
|
|
|
|
|
|
conf = float(pred_n['conf'].mean() * pred_m['conf'].mean()) |
|
K, focal = estimate_intrinsic(view_n['true_shape'], pred_n['pts3d'], pred_n['conf']) |
|
|
|
try: |
|
rel_pose_n2m = estimate_extrinsic(view_m['true_shape'], pred_m['pts3d_in_other_view'], im_conf.cpu().numpy(), K) |
|
R_mn, T_mn = rel_pose_n2m[:3, :3], rel_pose_n2m[:3, 3] |
|
except Exception as e: |
|
print(f"Error estimating extrinsic parameters: {e}") |
|
rel_pose_n2m = torch.eye(4).cuda() |
|
R_mn, T_mn = rel_pose_n2m[:3, :3], rel_pose_n2m[:3, 3] |
|
|
|
|
|
|
|
|
|
|
|
depth_n, depth_m = pred_n['pts3d'][..., 2], geotrf(inv(rel_pose_n2m), pred_m['pts3d_in_other_view'])[..., 2] |
|
|
|
return conf, K, focal, R_mn, T_mn, depth_n, depth_m |
|
|
|
|
|
def estimate_intrinsic(img_shape, pts3d, conf): |
|
H, W = img_shape |
|
pts3d = pts3d.cpu() |
|
pp = torch.tensor((W/2, H/2)) |
|
focal = float(estimate_focal_knowing_depth(pts3d[None], pp, focal_mode='weiszfeld')) |
|
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)]) |
|
|
|
return K, focal |
|
|
|
def estimate_extrinsic(img_shape, pts3d, conf, K): |
|
min_conf_thr = 3 |
|
|
|
H, W = img_shape |
|
H, W = H.item(), W.item() |
|
|
|
pts3d = pts3d.cpu().numpy() |
|
pixels = np.mgrid[:W, :H].T.astype(np.float32) |
|
msk = (conf > min_conf_thr) |
|
|
|
res = cv2.solvePnPRansac(pts3d[msk], pixels[msk], K, None, |
|
iterationsCount=100, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP) |
|
success, R, T, inliers = res |
|
assert success |
|
|
|
R = cv2.Rodrigues(R)[0] |
|
pose = inv(np.r_[np.c_[R, T], [(0, 0, 0, 1)]]) |
|
|
|
return torch.from_numpy(pose.astype(np.float32)).cuda() |
|
|
|
|
|
|