|
import numpy as np |
|
import cv2 |
|
from functools import wraps |
|
from matplotlib import pyplot as plt |
|
import torch |
|
|
|
MAX_VALUES_BY_DTYPE = { |
|
np.dtype('uint8'): 255, |
|
np.dtype('uint16'): 65535, |
|
np.dtype('uint32'): 4294967295, |
|
np.dtype('float32'): 1.0, |
|
} |
|
|
|
UNKNOWN_FLOW_THRESH = 1e7 |
|
SMALLFLOW = 0.0 |
|
LARGEFLOW = 1e8 |
|
|
|
def flow2rgb(flow_map, max_value): |
|
if isinstance(flow_map,np.ndarray): |
|
if flow_map.shape[2] == 2: |
|
flow_map = flow_map.transpose(2,0, 1) |
|
flow_map_np = flow_map |
|
else: |
|
if flow_map.shape[2] == 2: |
|
|
|
flow_map = flow_map.permute(2, 0, 1) |
|
flow_map_np = flow_map.detach().cpu().numpy() |
|
_, h, w = flow_map_np.shape |
|
flow_map_np[:,(flow_map_np[0] == 0) & (flow_map_np[1] == 0)] = float('nan') |
|
rgb_map = np.ones((3,h,w)).astype(np.float32) |
|
if max_value is not None: |
|
normalized_flow_map = flow_map_np / max_value |
|
else: |
|
normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max()) |
|
rgb_map[0] += normalized_flow_map[0] |
|
rgb_map[1] -= 0.5*(normalized_flow_map[0] + normalized_flow_map[1]) |
|
rgb_map[2] += normalized_flow_map[1] |
|
return rgb_map.clip(0,1) |
|
|
|
|
|
def flow_to_image(flow, maxrad=None): |
|
""" |
|
Convert flow into middlebury color code image |
|
:param flow: optical flow map |
|
:return: optical flow image in middlebury color |
|
""" |
|
h,w, _ = flow.shape |
|
u = flow[:, :, 0] |
|
v = flow[:, :, 1] |
|
|
|
maxu = -999. |
|
maxv = -999. |
|
minu = 999. |
|
minv = 999. |
|
|
|
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) |
|
u[idxUnknow] = 0 |
|
v[idxUnknow] = 0 |
|
|
|
if maxrad is None: |
|
rad = np.sqrt(u ** 2 + v ** 2) |
|
maxrad = max(-1, np.max(rad)) |
|
|
|
|
|
|
|
u = u/(maxrad + np.finfo(float).eps) |
|
v = v/(maxrad + np.finfo(float).eps) |
|
|
|
img = compute_color(u, v) |
|
|
|
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) |
|
img[idx] = 0 |
|
valid = np.ones((h,w), np.uint8) |
|
valid[np.logical_and(u == 0 , v == 0)] = 0 |
|
return np.uint8(img)*np.expand_dims(valid, axis=2) |
|
|
|
|
|
def show_flow(flow): |
|
""" |
|
visualize optical flow map using matplotlib |
|
:param filename: optical flow file |
|
:return: None |
|
""" |
|
img = flow_to_image(flow) |
|
plt.imshow(img) |
|
plt.show() |
|
|
|
return img |
|
|
|
|
|
def compute_color(u, v): |
|
""" |
|
compute optical flow color map |
|
:param u: optical flow horizontal map |
|
:param v: optical flow vertical map |
|
:return: optical flow in color code |
|
""" |
|
[h, w] = u.shape |
|
img = np.zeros([h, w, 3]) |
|
nanIdx = np.isnan(u) | np.isnan(v) |
|
u[nanIdx] = 0 |
|
v[nanIdx] = 0 |
|
|
|
colorwheel = make_color_wheel() |
|
ncols = np.size(colorwheel, 0) |
|
|
|
rad = np.sqrt(u**2+v**2) |
|
|
|
a = np.arctan2(-v, -u) / np.pi |
|
|
|
fk = (a+1) / 2 * (ncols - 1) + 1 |
|
|
|
k0 = np.floor(fk).astype(int) |
|
|
|
k1 = k0 + 1 |
|
k1[k1 == ncols+1] = 1 |
|
f = fk - k0 |
|
|
|
for i in range(0, np.size(colorwheel,1)): |
|
tmp = colorwheel[:, i] |
|
col0 = tmp[k0-1] / 255 |
|
col1 = tmp[k1-1] / 255 |
|
col = (1-f) * col0 + f * col1 |
|
|
|
idx = rad <= 1 |
|
col[idx] = 1-rad[idx]*(1-col[idx]) |
|
notidx = np.logical_not(idx) |
|
|
|
col[notidx] *= 0.75 |
|
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) |
|
|
|
return img |
|
|
|
|
|
def make_color_wheel(): |
|
""" |
|
Generate color wheel according Middlebury color code |
|
:return: Color wheel |
|
""" |
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
|
|
colorwheel = np.zeros([ncols, 3]) |
|
|
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) |
|
col += RY |
|
|
|
|
|
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) |
|
colorwheel[col:col+YG, 1] = 255 |
|
col += YG |
|
|
|
|
|
colorwheel[col:col+GC, 1] = 255 |
|
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) |
|
col += GC |
|
|
|
|
|
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) |
|
colorwheel[col:col+CB, 2] = 255 |
|
col += CB |
|
|
|
|
|
colorwheel[col:col+BM, 2] = 255 |
|
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) |
|
col += + BM |
|
|
|
|
|
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) |
|
colorwheel[col:col+MR, 0] = 255 |
|
|
|
return colorwheel |
|
|
|
|
|
|