Kai422kx's picture
init
4f6b78d
raw
history blame
4.57 kB
import numpy as np
import cv2
from functools import wraps
from matplotlib import pyplot as plt
import torch
MAX_VALUES_BY_DTYPE = {
np.dtype('uint8'): 255,
np.dtype('uint16'): 65535,
np.dtype('uint32'): 4294967295,
np.dtype('float32'): 1.0,
}
UNKNOWN_FLOW_THRESH = 1e7
SMALLFLOW = 0.0
LARGEFLOW = 1e8
def flow2rgb(flow_map, max_value):
if isinstance(flow_map,np.ndarray):
if flow_map.shape[2] == 2:
flow_map = flow_map.transpose(2,0, 1)
flow_map_np = flow_map
else:
if flow_map.shape[2] == 2:
# shape is HxWx2
flow_map = flow_map.permute(2, 0, 1)
flow_map_np = flow_map.detach().cpu().numpy()
_, h, w = flow_map_np.shape
flow_map_np[:,(flow_map_np[0] == 0) & (flow_map_np[1] == 0)] = float('nan')
rgb_map = np.ones((3,h,w)).astype(np.float32)
if max_value is not None:
normalized_flow_map = flow_map_np / max_value
else:
normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max())
rgb_map[0] += normalized_flow_map[0]
rgb_map[1] -= 0.5*(normalized_flow_map[0] + normalized_flow_map[1])
rgb_map[2] += normalized_flow_map[1]
return rgb_map.clip(0,1)
def flow_to_image(flow, maxrad=None):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
h,w, _ = flow.shape
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
if maxrad is None:
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
#print("max flow: %.4f\nflow range:\nu = %.3f .. %.3f\nv = %.3f .. %.3f" % (maxrad, minu,maxu, minv, maxv))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
valid = np.ones((h,w), np.uint8)
valid[np.logical_and(u == 0 , v == 0)] = 0
return np.uint8(img)*np.expand_dims(valid, axis=2)
def show_flow(flow):
"""
visualize optical flow map using matplotlib
:param filename: optical flow file
:return: None
"""
img = flow_to_image(flow)
plt.imshow(img)
plt.show()
return img
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel