|
|
|
|
|
|
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from dust3r.utils.vo_eval import save_trajectory_tum_format |
|
from PIL import Image |
|
|
|
def get_stride_distribution(strides, dist_type='uniform'): |
|
|
|
|
|
|
|
if dist_type == 'uniform': |
|
dist = np.ones(len(strides)) / len(strides) |
|
elif dist_type == 'exponential': |
|
lambda_param = 1.0 |
|
dist = np.exp(-lambda_param * np.arange(len(strides))) |
|
elif dist_type.startswith('linear'): |
|
try: |
|
start, end = map(float, dist_type.split('_')[1:]) |
|
dist = np.linspace(start, end, len(strides)) |
|
except ValueError: |
|
raise ValueError(f'Invalid linear distribution format: {dist_type}') |
|
else: |
|
raise ValueError('Unknown distribution type %s' % dist_type) |
|
|
|
|
|
return dist / np.sum(dist) |
|
|
|
|
|
def fill_default_args(kwargs, func): |
|
import inspect |
|
signature = inspect.signature(func) |
|
|
|
for k, v in signature.parameters.items(): |
|
if v.default is inspect.Parameter.empty: |
|
continue |
|
kwargs.setdefault(k, v.default) |
|
|
|
return kwargs |
|
|
|
|
|
def freeze_all_params(modules): |
|
for module in modules: |
|
try: |
|
for n, param in module.named_parameters(): |
|
param.requires_grad = False |
|
except AttributeError: |
|
|
|
module.requires_grad = False |
|
|
|
|
|
def is_symmetrized(gt1, gt2): |
|
x = gt1['instance'] |
|
y = gt2['instance'] |
|
if len(x) == len(y) and len(x) == 1: |
|
return False |
|
ok = True |
|
for i in range(0, len(x), 2): |
|
ok = ok and (x[i] == y[i + 1]) and (x[i + 1] == y[i]) |
|
return ok |
|
|
|
|
|
def flip(tensor): |
|
""" flip so that tensor[0::2] <=> tensor[1::2] """ |
|
return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1) |
|
|
|
|
|
def interleave(tensor1, tensor2): |
|
res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1) |
|
res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1) |
|
return res1, res2 |
|
|
|
|
|
def transpose_to_landscape(head, activate=True): |
|
""" Predict in the correct aspect-ratio, |
|
then transpose the result in landscape |
|
and stack everything back together. |
|
""" |
|
def wrapper_no(decout, true_shape): |
|
B = len(true_shape) |
|
assert true_shape[0:1].allclose(true_shape), 'true_shape must be all identical' |
|
H, W = true_shape[0].cpu().tolist() |
|
res = head(decout, (H, W)) |
|
return res |
|
|
|
def wrapper_yes(decout, true_shape): |
|
B = len(true_shape) |
|
|
|
H, W = int(true_shape.min()), int(true_shape.max()) |
|
|
|
height, width = true_shape.T |
|
is_landscape = (width >= height) |
|
is_portrait = ~is_landscape |
|
|
|
|
|
if is_landscape.all(): |
|
return head(decout, (H, W)) |
|
if is_portrait.all(): |
|
return transposed(head(decout, (W, H))) |
|
|
|
|
|
def selout(ar): return [d[ar] for d in decout] |
|
l_result = head(selout(is_landscape), (H, W)) |
|
p_result = transposed(head(selout(is_portrait), (W, H))) |
|
|
|
|
|
result = {} |
|
for k in l_result | p_result: |
|
x = l_result[k].new(B, *l_result[k].shape[1:]) |
|
x[is_landscape] = l_result[k] |
|
x[is_portrait] = p_result[k] |
|
result[k] = x |
|
|
|
return result |
|
|
|
return wrapper_yes if activate else wrapper_no |
|
|
|
|
|
def transposed(dic): |
|
return {k: v.swapaxes(1, 2) for k, v in dic.items()} |
|
|
|
|
|
def invalid_to_nans(arr, valid_mask, ndim=999): |
|
if valid_mask is not None: |
|
arr = arr.clone() |
|
arr[~valid_mask] = float('nan') |
|
if arr.ndim > ndim: |
|
arr = arr.flatten(-2 - (arr.ndim - ndim), -2) |
|
return arr |
|
|
|
|
|
def invalid_to_zeros(arr, valid_mask, ndim=999): |
|
if valid_mask is not None: |
|
arr = arr.clone() |
|
arr[~valid_mask] = 0 |
|
nnz = valid_mask.view(len(valid_mask), -1).sum(1) |
|
else: |
|
nnz = arr.numel() // len(arr) if len(arr) else 0 |
|
if arr.ndim > ndim: |
|
arr = arr.flatten(-2 - (arr.ndim - ndim), -2) |
|
return arr, nnz |
|
|
|
def save_tum_poses(traj, path): |
|
|
|
save_trajectory_tum_format(traj, path) |
|
return traj[0] |
|
|
|
def save_focals(focals, path): |
|
|
|
|
|
np.savetxt(path, focals.detach().cpu().numpy(), fmt='%.6f') |
|
return focals |
|
|
|
def save_intrinsics(K_raw, path): |
|
|
|
K = K_raw.reshape(-1, 9) |
|
np.savetxt(path, K.detach().cpu().numpy(), fmt='%.6f') |
|
return K_raw |
|
|
|
def save_conf_maps(conf, path): |
|
|
|
for i, c in enumerate(conf): |
|
np.save(f'{path}/conf_{i}.npy', c.detach().cpu().numpy()) |
|
return conf |
|
|
|
def save_rgb_imgs(imgs, path): |
|
|
|
for i, img in enumerate(imgs): |
|
|
|
img = img[..., ::-1] |
|
cv2.imwrite(f'{path}/frame_{i:04d}.png', img*255) |
|
return imgs |
|
|
|
def save_dynamic_masks(dynamic_masks, path): |
|
|
|
for i, dynamic_mask in enumerate(dynamic_masks): |
|
cv2.imwrite(f'{path}/dynamic_mask_{i}.png', (dynamic_mask * 255).detach().cpu().numpy().astype(np.uint8)) |
|
return dynamic_masks |
|
|
|
def save_depth_maps(depth_maps, path): |
|
images = [] |
|
for i, depth_map in enumerate(depth_maps): |
|
depth_map_colored = cv2.applyColorMap((depth_map * 255).detach().cpu().numpy().astype(np.uint8), cv2.COLORMAP_JET) |
|
img_path = f'{path}/frame_{(i):04d}.png' |
|
cv2.imwrite(img_path, depth_map_colored) |
|
images.append(Image.open(img_path)) |
|
|
|
np.save(f'{path}/frame_{(i):04d}.npy', depth_map.detach().cpu().numpy()) |
|
|
|
|
|
images[0].save(f'{path}/_depth_maps.gif', save_all=True, append_images=images[1:], duration=100, loop=0) |
|
return depth_maps |
|
|
|
def to_cpu(x): |
|
if isinstance(x, torch.Tensor): |
|
return x.detach().cpu() |
|
if isinstance(x, list): |
|
return [to_cpu(xx) for xx in x] |