|
|
|
|
|
|
|
import numpy as np |
|
|
|
import utils.utils_poses.ATE.transformations as tfs |
|
import utils.utils_poses.ATE.align_trajectory as align |
|
|
|
|
|
def _getIndices(n_aligned, total_n): |
|
if n_aligned == -1: |
|
idxs = np.arange(0, total_n) |
|
else: |
|
assert n_aligned <= total_n and n_aligned >= 1 |
|
idxs = np.arange(0, n_aligned) |
|
return idxs |
|
|
|
|
|
def alignPositionYawSingle(p_es, p_gt, q_es, q_gt): |
|
''' |
|
calcualte the 4DOF transformation: yaw R and translation t so that: |
|
gt = R * est + t |
|
''' |
|
|
|
p_es_0, q_es_0 = p_es[0, :], q_es[0, :] |
|
p_gt_0, q_gt_0 = p_gt[0, :], q_gt[0, :] |
|
g_rot = tfs.quaternion_matrix(q_gt_0) |
|
g_rot = g_rot[0:3, 0:3] |
|
est_rot = tfs.quaternion_matrix(q_es_0) |
|
est_rot = est_rot[0:3, 0:3] |
|
|
|
C_R = np.dot(est_rot, g_rot.transpose()) |
|
theta = align.get_best_yaw(C_R) |
|
R = align.rot_z(theta) |
|
t = p_gt_0 - np.dot(R, p_es_0) |
|
|
|
return R, t |
|
|
|
|
|
def alignPositionYaw(p_es, p_gt, q_es, q_gt, n_aligned=1): |
|
if n_aligned == 1: |
|
R, t = alignPositionYawSingle(p_es, p_gt, q_es, q_gt) |
|
return R, t |
|
else: |
|
idxs = _getIndices(n_aligned, p_es.shape[0]) |
|
est_pos = p_es[idxs, 0:3] |
|
gt_pos = p_gt[idxs, 0:3] |
|
_, R, t = align.align_umeyama(gt_pos, est_pos, known_scale=True, |
|
yaw_only=True) |
|
t = np.array(t) |
|
t = t.reshape((3, )) |
|
R = np.array(R) |
|
return R, t |
|
|
|
|
|
|
|
def alignSE3Single(p_es, p_gt, q_es, q_gt): |
|
''' |
|
Calculate SE3 transformation R and t so that: |
|
gt = R * est + t |
|
Using only the first poses of est and gt |
|
''' |
|
|
|
p_es_0, q_es_0 = p_es[0, :], q_es[0, :] |
|
p_gt_0, q_gt_0 = p_gt[0, :], q_gt[0, :] |
|
|
|
g_rot = tfs.quaternion_matrix(q_gt_0) |
|
g_rot = g_rot[0:3, 0:3] |
|
est_rot = tfs.quaternion_matrix(q_es_0) |
|
est_rot = est_rot[0:3, 0:3] |
|
|
|
R = np.dot(g_rot, np.transpose(est_rot)) |
|
t = p_gt_0 - np.dot(R, p_es_0) |
|
|
|
return R, t |
|
|
|
|
|
def alignSE3(p_es, p_gt, q_es, q_gt, n_aligned=-1): |
|
''' |
|
Calculate SE3 transformation R and t so that: |
|
gt = R * est + t |
|
''' |
|
if n_aligned == 1: |
|
R, t = alignSE3Single(p_es, p_gt, q_es, q_gt) |
|
return R, t |
|
else: |
|
idxs = _getIndices(n_aligned, p_es.shape[0]) |
|
est_pos = p_es[idxs, 0:3] |
|
gt_pos = p_gt[idxs, 0:3] |
|
s, R, t = align.align_umeyama(gt_pos, est_pos, |
|
known_scale=True) |
|
t = np.array(t) |
|
t = t.reshape((3, )) |
|
R = np.array(R) |
|
return R, t |
|
|
|
|
|
|
|
def alignSIM3(p_es, p_gt, q_es, q_gt, n_aligned=-1): |
|
''' |
|
calculate s, R, t so that: |
|
gt = R * s * est + t |
|
''' |
|
idxs = _getIndices(n_aligned, p_es.shape[0]) |
|
est_pos = p_es[idxs, 0:3] |
|
gt_pos = p_gt[idxs, 0:3] |
|
s, R, t = align.align_umeyama(gt_pos, est_pos) |
|
return s, R, t |
|
|
|
|
|
|
|
def alignTrajectory(p_es, p_gt, q_es, q_gt, method, n_aligned=-1): |
|
''' |
|
calculate s, R, t so that: |
|
gt = R * s * est + t |
|
method can be: sim3, se3, posyaw, none; |
|
n_aligned: -1 means using all the frames |
|
''' |
|
assert p_es.shape[1] == 3 |
|
assert p_gt.shape[1] == 3 |
|
assert q_es.shape[1] == 4 |
|
assert q_gt.shape[1] == 4 |
|
|
|
s = 1 |
|
R = None |
|
t = None |
|
if method == 'sim3': |
|
assert n_aligned >= 2 or n_aligned == -1, "sim3 uses at least 2 frames" |
|
s, R, t = alignSIM3(p_es, p_gt, q_es, q_gt, n_aligned) |
|
elif method == 'se3': |
|
R, t = alignSE3(p_es, p_gt, q_es, q_gt, n_aligned) |
|
elif method == 'posyaw': |
|
R, t = alignPositionYaw(p_es, p_gt, q_es, q_gt, n_aligned) |
|
elif method == 'none': |
|
R = np.identity(3) |
|
t = np.zeros((3, )) |
|
else: |
|
assert False, 'unknown alignment method' |
|
|
|
return s, R, t |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|