Kai422kx commited on
Commit
639adcd
·
1 Parent(s): 0bc2276

print memory usage

Browse files
Files changed (2) hide show
  1. .gitignore +2 -0
  2. app.py +12 -3
.gitignore CHANGED
@@ -21,3 +21,5 @@ build/
21
  .vs
22
  /exp/
23
  /dev/
 
 
 
21
  .vs
22
  /exp/
23
  /dev/
24
+ gradio_cache_folder/
25
+ results/
app.py CHANGED
@@ -39,7 +39,7 @@ def natural_sort(l):
39
 
40
  def cmd(command):
41
  print(command)
42
- os.system(command)
43
 
44
  @spaces.GPU(duration=150)
45
  def process(inputfiles, input_path='demo'):
@@ -59,6 +59,11 @@ def process(inputfiles, input_path='demo'):
59
  for i, frame in enumerate(frames):
60
  shutil.copy(frame, f"{temp_dir}/{i:04d}.{frame.split('.')[-1]}")
61
 
 
 
 
 
 
62
  imgs_path = temp_dir
63
  output_path = f'./results/{input_path}/output'
64
  cmd(f"python dynamic_predictor/launch.py --mode=eval_pose_custom \
@@ -75,13 +80,17 @@ def process(inputfiles, input_path='demo'):
75
  if torch.cuda.is_available():
76
  torch.cuda.empty_cache()
77
  print(output_path)
 
78
  cmd(f"python train_gui.py -s {output_path} -m {output_path} --iter 2000")
79
  cmd(f"python render.py -s {output_path} -m {output_path} --iter 2000 --get_video")
80
 
81
  gc.collect()
82
  if torch.cuda.is_available():
83
  torch.cuda.empty_cache()
84
-
 
 
 
85
  output_video_path = f"{output_path}/rendered.mp4"
86
  output_ply_path = f"{output_path}/point_cloud/iteration_2000/point_cloud.ply"
87
  return output_video_path, output_ply_path, output_ply_path
@@ -157,6 +166,6 @@ with block:
157
  outputs=[output_video, output_file, output_model],
158
  fn=lambda x: process(inputfiles=None, input_path=x),
159
  cache_examples=True,
160
- label='Sparse-view Examples'
161
  )
162
  block.launch(server_name="0.0.0.0", share=False)
 
39
 
40
  def cmd(command):
41
  print(command)
42
+ subprocess.run(shlex.split(command))
43
 
44
  @spaces.GPU(duration=150)
45
  def process(inputfiles, input_path='demo'):
 
59
  for i, frame in enumerate(frames):
60
  shutil.copy(frame, f"{temp_dir}/{i:04d}.{frame.split('.')[-1]}")
61
 
62
+ if torch.cuda.is_available():
63
+ free_memory, total_memory = torch.cuda.mem_get_info()
64
+ print(f"Available CUDA memory: {free_memory / (1024 ** 2):.2f} MB")
65
+ print(f"Total CUDA memory: {total_memory / (1024 ** 2):.2f} MB")
66
+
67
  imgs_path = temp_dir
68
  output_path = f'./results/{input_path}/output'
69
  cmd(f"python dynamic_predictor/launch.py --mode=eval_pose_custom \
 
80
  if torch.cuda.is_available():
81
  torch.cuda.empty_cache()
82
  print(output_path)
83
+
84
  cmd(f"python train_gui.py -s {output_path} -m {output_path} --iter 2000")
85
  cmd(f"python render.py -s {output_path} -m {output_path} --iter 2000 --get_video")
86
 
87
  gc.collect()
88
  if torch.cuda.is_available():
89
  torch.cuda.empty_cache()
90
+ if torch.cuda.is_available():
91
+ free_memory, total_memory = torch.cuda.mem_get_info()
92
+ print(f"Available CUDA memory: {free_memory / (1024 ** 2):.2f} MB")
93
+ print(f"Total CUDA memory: {total_memory / (1024 ** 2):.2f} MB")
94
  output_video_path = f"{output_path}/rendered.mp4"
95
  output_ply_path = f"{output_path}/point_cloud/iteration_2000/point_cloud.ply"
96
  return output_video_path, output_ply_path, output_ply_path
 
166
  outputs=[output_video, output_file, output_model],
167
  fn=lambda x: process(inputfiles=None, input_path=x),
168
  cache_examples=True,
169
+ label='Examples'
170
  )
171
  block.launch(server_name="0.0.0.0", share=False)