import sys sys.path.append('.') import os import torch import numpy as np import os.path as osp import glob from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset from dust3r.utils.image import imread_cv2 from dust3r.utils.misc import get_stride_distribution np.random.seed(125) torch.multiprocessing.set_sharing_strategy('file_system') def depth_read(filename): depth = np.load(filename) return depth def xyzqxqyqxqw_to_c2w(xyzqxqyqxqw): xyzqxqyqxqw = np.array(xyzqxqyqxqw, dtype=np.float32) #NOTE: we need to convert x_y_z coordinate system to z_x_y coordinate system z, x, y = xyzqxqyqxqw[:3] qz, qx, qy, qw = xyzqxqyqxqw[3:] c2w = np.eye(4) c2w[:3, :3] = np.array([ [1 - 2*qy*qy - 2*qz*qz, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw], [2*qx*qy + 2*qz*qw, 1 - 2*qx*qx - 2*qz*qz, 2*qy*qz - 2*qx*qw], [2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx*qx - 2*qy*qy] ]) c2w[:3, 3] = np.array([x, y, z]) return c2w class TarTanAirDUSt3R(BaseStereoViewDataset): def __init__(self, dataset_location='data/tartanair', dset='Hard', use_augs=False, S=2, strides=[8], clip_step=2, quick=False, verbose=False, dist_type=None, *args, **kwargs ): print('loading tartanair dataset...') super().__init__(*args, **kwargs) self.dataset_label = 'tartanair' self.split = dset self.S = S # number of frames self.verbose = verbose self.use_augs = use_augs self.dset = dset self.rgb_paths = [] self.depth_paths = [] self.normal_paths = [] self.traj_paths = [] self.annotations = [] self.full_idxs = [] self.sample_stride = [] self.strides = strides self.subdirs = [] self.sequences = [] self.subdirs.append(os.path.join(dataset_location)) #'data/tartanair' for subdir in self.subdirs: for seq in glob.glob(os.path.join(subdir, "*/", dset, "*/")): self.sequences.append(seq) self.sequences = sorted(self.sequences) if self.verbose: print(self.sequences) print('found %d unique videos in %s (dset=%s)' % (len(self.sequences), dataset_location, dset)) if quick: self.sequences = self.sequences[1:2] for seq in self.sequences: if self.verbose: print('seq', seq) rgb_path = os.path.join(seq, 'image_left') depth_path = os.path.join(seq, 'depth_left') caminfo_path = os.path.join(seq, 'pose_left.txt') caminfo = np.loadtxt(caminfo_path) for stride in strides: for ii in range(0,len(os.listdir(rgb_path))-self.S*stride+1, clip_step): full_idx = ii + np.arange(self.S)*stride self.rgb_paths.append([os.path.join(rgb_path, '%06d_left.png' % idx) for idx in full_idx]) self.depth_paths.append([os.path.join(depth_path, '%06d_left_depth.npy' % idx) for idx in full_idx]) self.annotations.append(caminfo[full_idx]) self.full_idxs.append(full_idx) self.sample_stride.append(stride) if self.verbose: sys.stdout.write('.') sys.stdout.flush() fx = 320.0 # focal length x fy = 320.0 # focal length y cx = 320.0 # optical center x cy = 240.0 # optical center y width = 640 height = 480 self.intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) self.stride_counts = {} self.stride_idxs = {} for stride in strides: self.stride_counts[stride] = 0 self.stride_idxs[stride] = [] for i, stride in enumerate(self.sample_stride): self.stride_counts[stride] += 1 self.stride_idxs[stride].append(i) print('stride counts:', self.stride_counts) if len(strides) > 1 and dist_type is not None: self._resample_clips(strides, dist_type) print('collected %d clips of length %d in %s (dset=%s)' % ( len(self.rgb_paths), self.S, dataset_location, dset)) def _resample_clips(self, strides, dist_type): # Get distribution of strides, and sample based on that dist = get_stride_distribution(strides, dist_type=dist_type) dist = dist / np.max(dist) max_num_clips = self.stride_counts[strides[np.argmax(dist)]] num_clips_each_stride = [min(self.stride_counts[stride], int(dist[i]*max_num_clips)) for i, stride in enumerate(strides)] print('resampled_num_clips_each_stride:', num_clips_each_stride) resampled_idxs = [] for i, stride in enumerate(strides): resampled_idxs += np.random.choice(self.stride_idxs[stride], num_clips_each_stride[i], replace=False).tolist() self.rgb_paths = [self.rgb_paths[i] for i in resampled_idxs] self.depth_paths = [self.depth_paths[i] for i in resampled_idxs] self.annotations = [self.annotations[i] for i in resampled_idxs] self.full_idxs = [self.full_idxs[i] for i in resampled_idxs] self.sample_stride = [self.sample_stride[i] for i in resampled_idxs] def __len__(self): return len(self.rgb_paths) def _get_views(self, index, resolution, rng): rgb_paths = self.rgb_paths[index] depth_paths = self.depth_paths[index] full_idx = self.full_idxs[index] annotations = self.annotations[index] views = [] for i in range(2): impath = rgb_paths[i] depthpath = depth_paths[i] # load camera params camera_pose = np.array(xyzqxqyqxqw_to_c2w(annotations[i]), dtype=np.float32) # camera_pose = np.linalg.inv(camera_pose) # load image and depth rgb_image = imread_cv2(impath) depthmap = depth_read(depthpath) rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, self.intrinsics, resolution, rng=rng, info=impath) views.append(dict( img=rgb_image, depthmap=depthmap, camera_pose=camera_pose, camera_intrinsics=intrinsics, dataset=self.dataset_label, label=rgb_paths[i].split('/')[-5]+'-'+rgb_paths[i].split('/')[-3], instance=osp.split(rgb_paths[i])[1], )) return views if __name__ == "__main__": from dust3r.viz import SceneViz, auto_cam_size from dust3r.utils.image import rgb use_augs = False S = 2 strides = [1,2,3,4,5,6,7,8,9] clip_step = 2 quick = False # Set to True for quick testing def visualize_scene(idx): views = dataset[idx] assert len(views) == 2 viz = SceneViz() poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] cam_size = max(auto_cam_size(poses), 1) label = views[0]['label'] instance = views[0]['instance'] for view_idx in [0, 1]: pts3d = views[view_idx]['pts3d'] valid_mask = views[view_idx]['valid_mask'] colors = rgb(views[view_idx]['img']) viz.add_pointcloud(pts3d, colors, valid_mask) viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], focal=views[view_idx]['camera_intrinsics'][0, 0], color=(255, 0, 0), image=colors, cam_size=cam_size) path = f"./tmp/tartanair/tartanair_scene_{label}_{instance}.glb" return viz.save_glb(path) dataset = TarTanAirDUSt3R( use_augs=use_augs, S=S, strides=strides, clip_step=clip_step, quick=quick, verbose=False, resolution=(512,384), dist_type='linear_9_1', aug_crop=16) idxs = np.arange(0, len(dataset)-1, (len(dataset)-1)//10) for idx in idxs: print(f"Visualizing scene {idx}...") visualize_scene(idx)