# build upon InstantSplat https://huggingface.co/spaces/kairunwen/InstantSplat/blob/main/app.py import os, subprocess, shlex, sys, gc import numpy as np import shutil import argparse import gradio as gr import uuid import glob import re import torch import spaces subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl --force-reinstall")) subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl --force-reinstall")) subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl --force-reinstall")) GRADIO_CACHE_FOLDER = './gradio_cache_folder' def get_dust3r_args_parser(): parser = argparse.ArgumentParser() parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") parser.add_argument("--model_path", type=str, default="submodules/dust3r/checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", help="path to the model weights") parser.add_argument("--device", type=str, default='cuda', help="pytorch device") parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--schedule", type=str, default='linear') parser.add_argument("--lr", type=float, default=0.01) parser.add_argument("--niter", type=int, default=300) parser.add_argument("--focal_avg", type=bool, default=True) parser.add_argument("--n_views", type=int, default=3) parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER) return parser def natural_sort(l): convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key.split('/')[-1])] return sorted(l, key=alphanum_key) def cmd(command): print(command) subprocess.run(shlex.split(command)) @spaces.GPU(duration=70) def cmd_gpu_s1(command): print('gpu:', command) subprocess.run(shlex.split(command)) @spaces.GPU(duration=40) def cmd_gpu_s2(command): print('gpu:', command) subprocess.run(shlex.split(command)) @spaces.GPU(duration=20) def cmd_gpu_s3(command): print('gpu:', command) subprocess.run(shlex.split(command)) def process(inputfiles, input_path='demo'): if inputfiles: frames = natural_sort(inputfiles) else: frames = natural_sort(glob.glob('./assets/example/' + input_path + '/*')) if len(frames) > 20: stride = int(np.ceil(len(frames) / 20)) frames = frames[::stride] # Create a temporary directory to store the selected frames temp_dir = os.path.join(GRADIO_CACHE_FOLDER, str(uuid.uuid4())) os.makedirs(temp_dir, exist_ok=True) # Copy the selected frames to the temporary directory for i, frame in enumerate(frames): shutil.copy(frame, f"{temp_dir}/{i:04d}.{frame.split('.')[-1]}") imgs_path = temp_dir output_path = f'./results/{input_path}/output' cmd_gpu_s1(f"python dynamic_predictor/launch.py --mode=eval_pose_custom \ --pretrained=Kai422kx/das3r \ --dir_path={imgs_path} \ --output_dir={output_path} \ --use_pred_mask --n_iter 150") cmd(f"python utils/rearrange.py --output_dir={output_path}") output_path = f'{output_path}_rearranged' cmd_gpu_s2(f"python train_gui.py -s {output_path} -m {output_path} --iter 2000") cmd_gpu_s3(f"python render.py -s {output_path} -m {output_path} --iter 2000 --get_video") output_video_path = f"{output_path}/rendered.mp4" output_ply_path = f"{output_path}/point_cloud/iteration_2000/point_cloud.ply" return output_video_path, output_ply_path, output_ply_path _TITLE = '''DAS3R''' _DESCRIPTION = '''