import torch import numpy as np import torchvision.ops as ops def matmul2(mat1, mat2): return torch.matmul(mat1, mat2) def matmul3(mat1, mat2, mat3): return torch.matmul(mat1, torch.matmul(mat2, mat3)) def eye_3x3(B, device='cuda'): rt = torch.eye(3, device=torch.device(device)).view(1,3,3).repeat([B, 1, 1]) return rt def eye_4x4(B, device='cuda'): rt = torch.eye(4, device=torch.device(device)).view(1,4,4).repeat([B, 1, 1]) return rt def safe_inverse(a): inv = a.clone() r_transpose = a[:3, :3].transpose(0, 1) # inverse of rotation matrix inv[:3, :3] = r_transpose inv[:3, 3:4] = -torch.matmul(r_transpose, a[:3, 3:4]) return inv def safe_inverse_batch(a): #parallel version B, _, _ = list(a.shape) inv = a.clone() r_transpose = a[:, :3, :3].transpose(1,2) #inverse of rotation matrix inv[:, :3, :3] = r_transpose inv[:, :3, 3:4] = -torch.matmul(r_transpose, a[:, :3, 3:4]) return inv def safe_inverse_single(a): r, t = split_rt_single(a) t = t.view(3,1) r_transpose = r.t() inv = torch.cat([r_transpose, -torch.matmul(r_transpose, t)], 1) bottom_row = a[3:4, :] # this is [0, 0, 0, 1] # bottom_row = torch.tensor([0.,0.,0.,1.]).view(1,4) inv = torch.cat([inv, bottom_row], 0) return inv def split_intrinsics(K): # K is B x 3 x 3 or B x 4 x 4 fx = K[:,0,0] fy = K[:,1,1] x0 = K[:,0,2] y0 = K[:,1,2] return fx, fy, x0, y0 def apply_pix_T_cam(pix_T_cam, xyz): fx, fy, x0, y0 = split_intrinsics(pix_T_cam) # xyz is shaped B x H*W x 3 # returns xy, shaped B x H*W x 2 B, N, C = list(xyz.shape) assert(C==3) x, y, z = torch.unbind(xyz, axis=-1) fx = torch.reshape(fx, [B, 1]) fy = torch.reshape(fy, [B, 1]) x0 = torch.reshape(x0, [B, 1]) y0 = torch.reshape(y0, [B, 1]) EPS = 1e-4 z = torch.clamp(z, min=EPS) x = (x*fx)/(z)+x0 y = (y*fy)/(z)+y0 xy = torch.stack([x, y], axis=-1) return xy def apply_pix_T_cam_py(pix_T_cam, xyz): fx, fy, x0, y0 = split_intrinsics(pix_T_cam) # xyz is shaped B x H*W x 3 # returns xy, shaped B x H*W x 2 B, N, C = list(xyz.shape) assert(C==3) x, y, z = xyz[:,:,0], xyz[:,:,1], xyz[:,:,2] fx = np.reshape(fx, [B, 1]) fy = np.reshape(fy, [B, 1]) x0 = np.reshape(x0, [B, 1]) y0 = np.reshape(y0, [B, 1]) EPS = 1e-4 z = np.clip(z, EPS, None) x = (x*fx)/(z)+x0 y = (y*fy)/(z)+y0 xy = np.stack([x, y], axis=-1) return xy def get_camM_T_camXs(origin_T_camXs, ind=0): B, S = list(origin_T_camXs.shape)[0:2] camM_T_camXs = torch.zeros_like(origin_T_camXs) for b in list(range(B)): camM_T_origin = safe_inverse_single(origin_T_camXs[b,ind]) for s in list(range(S)): camM_T_camXs[b,s] = torch.matmul(camM_T_origin, origin_T_camXs[b,s]) return camM_T_camXs def realative_T_py(cam_T1, cam_T2): cam_T1 = torch.tensor(cam_T1, dtype=torch.float32) cam_T2 = torch.tensor(cam_T2, dtype=torch.float32) inv_cam_T1 = safe_inverse(cam_T1) relative_transform = torch.matmul(inv_cam_T1, cam_T2) return relative_transform.numpy() def apply_4x4(RT, xyz): B, N, _ = list(xyz.shape) ones = torch.ones_like(xyz[:,:,0:1]) xyz1 = torch.cat([xyz, ones], 2) xyz1_t = torch.transpose(xyz1, 1, 2) # this is B x 4 x N xyz2_t = torch.matmul(RT, xyz1_t) xyz2 = torch.transpose(xyz2_t, 1, 2) xyz2 = xyz2[:,:,:3] return xyz2 def apply_4x4_py(RT, xyz): ones = np.ones_like(xyz[:, 0:1]) xyz1 = np.concatenate([xyz, ones], 1) xyz1_t = xyz1.transpose(1, 0) xyz2_t = np.matmul(RT, xyz1_t) xyz2 = xyz2_t.transpose(1, 0) xyz2 = xyz2[:, :3] return xyz2 def apply_4x4_py_batch(RT, xyz): # print('RT', RT.shape) B, N, _ = list(xyz.shape) ones = np.ones_like(xyz[:,:,0:1]) xyz1 = np.concatenate([xyz, ones], 2) # print('xyz1', xyz1.shape) xyz1_t = xyz1.transpose(0,2,1) # print('xyz1_t', xyz1_t.shape) # this is B x 4 x N xyz2_t = np.matmul(RT, xyz1_t) # print('xyz2_t', xyz2_t.shape) xyz2 = xyz2_t.transpose(0,2,1) # print('xyz2', xyz2.shape) xyz2 = xyz2[:,:,:3] return xyz2 def apply_3x3(RT, xy): B, N, _ = list(xy.shape) ones = torch.ones_like(xy[:,:,0:1]) xy1 = torch.cat([xy, ones], 2) xy1_t = torch.transpose(xy1, 1, 2) # this is B x 4 x N xy2_t = torch.matmul(RT, xy1_t) xy2 = torch.transpose(xy2_t, 1, 2) xy2 = xy2[:,:,:2] return xy2 def generate_polygon(ctr_x, ctr_y, avg_r, irregularity, spikiness, num_verts): ''' Start with the center of the polygon at ctr_x, ctr_y, Then creates the polygon by sampling points on a circle around the center. Random noise is added by varying the angular spacing between sequential points, and by varying the radial distance of each point from the centre. Params: ctr_x, ctr_y - coordinates of the "centre" of the polygon avg_r - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude. irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts] spikiness - [0,1] indicating how much variance there is in each vertex from the circle of radius avg_r. [0,1] will map to [0, avg_r] pp num_verts Returns: np.array [num_verts, 2] - CCW order. ''' # spikiness spikiness = np.clip(spikiness, 0, 1) * avg_r # generate n angle steps irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / num_verts lower = (2*np.pi / num_verts) - irregularity upper = (2*np.pi / num_verts) + irregularity # angle steps angle_steps = np.random.uniform(lower, upper, num_verts) sc = (2 * np.pi) / angle_steps.sum() angle_steps *= sc # get all radii angle = np.random.uniform(0, 2*np.pi) radii = np.clip(np.random.normal(avg_r, spikiness, num_verts), 0, 2 * avg_r) # compute all points points = [] for i in range(num_verts): x = ctr_x + radii[i] * np.cos(angle) y = ctr_y + radii[i] * np.sin(angle) points.append([x, y]) angle += angle_steps[i] return np.array(points).astype(int) def get_random_affine_2d(B, rot_min=-5.0, rot_max=5.0, tx_min=-0.1, tx_max=0.1, ty_min=-0.1, ty_max=0.1, sx_min=-0.05, sx_max=0.05, sy_min=-0.05, sy_max=0.05, shx_min=-0.05, shx_max=0.05, shy_min=-0.05, shy_max=0.05): ''' Params: rot_min: rotation amount min rot_max: rotation amount max tx_min: translation x min tx_max: translation x max ty_min: translation y min ty_max: translation y max sx_min: scaling x min sx_max: scaling x max sy_min: scaling y min sy_max: scaling y max shx_min: shear x min shx_max: shear x max shy_min: shear y min shy_max: shear y max Returns: transformation matrix: (B, 3, 3) ''' # rotation if rot_max - rot_min != 0: rot_amount = np.random.uniform(low=rot_min, high=rot_max, size=B) rot_amount = np.pi/180.0*rot_amount else: rot_amount = rot_min rotation = np.zeros((B, 3, 3)) # B, 3, 3 rotation[:, 2, 2] = 1 rotation[:, 0, 0] = np.cos(rot_amount) rotation[:, 0, 1] = -np.sin(rot_amount) rotation[:, 1, 0] = np.sin(rot_amount) rotation[:, 1, 1] = np.cos(rot_amount) # translation translation = np.zeros((B, 3, 3)) # B, 3, 3 translation[:, [0,1,2], [0,1,2]] = 1 if (tx_max - tx_min) > 0: trans_x = np.random.uniform(low=tx_min, high=tx_max, size=B) translation[:, 0, 2] = trans_x # else: # translation[:, 0, 2] = tx_max if ty_max - ty_min != 0: trans_y = np.random.uniform(low=ty_min, high=ty_max, size=B) translation[:, 1, 2] = trans_y # else: # translation[:, 1, 2] = ty_max # scaling scaling = np.zeros((B, 3, 3)) # B, 3, 3 scaling[:, [0,1,2], [0,1,2]] = 1 if (sx_max - sx_min) > 0: scale_x = 1 + np.random.uniform(low=sx_min, high=sx_max, size=B) scaling[:, 0, 0] = scale_x # else: # scaling[:, 0, 0] = sx_max if (sy_max - sy_min) > 0: scale_y = 1 + np.random.uniform(low=sy_min, high=sy_max, size=B) scaling[:, 1, 1] = scale_y # else: # scaling[:, 1, 1] = sy_max # shear shear = np.zeros((B, 3, 3)) # B, 3, 3 shear[:, [0,1,2], [0,1,2]] = 1 if (shx_max - shx_min) > 0: shear_x = np.random.uniform(low=shx_min, high=shx_max, size=B) shear[:, 0, 1] = shear_x # else: # shear[:, 0, 1] = shx_max if (shy_max - shy_min) > 0: shear_y = np.random.uniform(low=shy_min, high=shy_max, size=B) shear[:, 1, 0] = shear_y # else: # shear[:, 1, 0] = shy_max # compose all those rt = np.einsum("ijk,ikl->ijl", rotation, translation) ss = np.einsum("ijk,ikl->ijl", scaling, shear) trans = np.einsum("ijk,ikl->ijl", rt, ss) return trans def get_centroid_from_box2d(box2d): ymin = box2d[:,0] xmin = box2d[:,1] ymax = box2d[:,2] xmax = box2d[:,3] x = (xmin+xmax)/2.0 y = (ymin+ymax)/2.0 return y, x def normalize_boxlist2d(boxlist2d, H, W): boxlist2d = boxlist2d.clone() ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2) ymin = ymin / float(H) ymax = ymax / float(H) xmin = xmin / float(W) xmax = xmax / float(W) boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2) return boxlist2d def unnormalize_boxlist2d(boxlist2d, H, W): boxlist2d = boxlist2d.clone() ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2) ymin = ymin * float(H) ymax = ymax * float(H) xmin = xmin * float(W) xmax = xmax * float(W) boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2) return boxlist2d def unnormalize_box2d(box2d, H, W): return unnormalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1) def normalize_box2d(box2d, H, W): return normalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1) def get_size_from_box2d(box2d): ymin = box2d[:,0] xmin = box2d[:,1] ymax = box2d[:,2] xmax = box2d[:,3] height = ymax-ymin width = xmax-xmin return height, width def crop_and_resize(im, boxlist, PH, PW, boxlist_is_normalized=False): B, C, H, W = im.shape B2, N, D = boxlist.shape assert(B==B2) assert(D==4) # PH, PW is the size to resize to # output is B,N,C,PH,PW # pt wants xy xy, unnormalized if boxlist_is_normalized: boxlist_unnorm = unnormalize_boxlist2d(boxlist, H, W) else: boxlist_unnorm = boxlist ymin, xmin, ymax, xmax = boxlist_unnorm.unbind(2) # boxlist_pt = torch.stack([boxlist_unnorm[:,1], boxlist_unnorm[:,0], boxlist_unnorm[:,3], boxlist_unnorm[:,2]], dim=1) boxlist_pt = torch.stack([xmin, ymin, xmax, ymax], dim=2) # we want a B-len list of K x 4 arrays # print('im', im.shape) # print('boxlist', boxlist.shape) # print('boxlist_pt', boxlist_pt.shape) # boxlist_pt = list(boxlist_pt.unbind(0)) crops = [] for b in range(B): crops_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW)) crops.append(crops_b) # # crops = im # print('crops', crops.shape) # crops = crops.reshape(B,N,C,PH,PW) # crops = [] # for b in range(B): # crop_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW)) # print('crop_b', crop_b.shape) # crops.append(crop_b) crops = torch.stack(crops, dim=0) # print('crops', crops.shape) # boxlist_list = boxlist_pt.unbind(0) # print('rgb_crop', rgb_crop.shape) return crops # def get_boxlist_from_centroid_and_size(cy, cx, h, w, clip=True): # # cy,cx are both B,N # ymin = cy - h/2 # ymax = cy + h/2 # xmin = cx - w/2 # xmax = cx + w/2 # box = torch.stack([ymin, xmin, ymax, xmax], dim=-1) # if clip: # box = torch.clamp(box, 0, 1) # return box def get_boxlist_from_centroid_and_size(cy, cx, h, w):#, clip=False): # cy,cx are the same shape ymin = cy - h/2 ymax = cy + h/2 xmin = cx - w/2 xmax = cx + w/2 # if clip: # ymin = torch.clamp(ymin, 0, H-1) # ymax = torch.clamp(ymax, 0, H-1) # xmin = torch.clamp(xmin, 0, W-1) # xmax = torch.clamp(xmax, 0, W-1) box = torch.stack([ymin, xmin, ymax, xmax], dim=-1) return box def get_box2d_from_mask(mask, normalize=False): # mask is B, 1, H, W B, C, H, W = mask.shape assert(C==1) xy = utils.basic.gridcloud2d(B, H, W, norm=False, device=mask.device) # B, H*W, 2 box = torch.zeros((B, 4), dtype=torch.float32, device=mask.device) for b in range(B): xy_b = xy[b] # H*W, 2 mask_b = mask[b].reshape(H*W) xy_ = xy_b[mask_b > 0] x_ = xy_[:,0] y_ = xy_[:,1] ymin = torch.min(y_) ymax = torch.max(y_) xmin = torch.min(x_) xmax = torch.max(x_) box[b] = torch.stack([ymin, xmin, ymax, xmax], dim=0) if normalize: box = normalize_boxlist2d(box.unsqueeze(1), H, W).squeeze(1) return box def convert_box2d_to_intrinsics(box2d, pix_T_cam, H, W, use_image_aspect_ratio=True, mult_padding=1.0): # box2d is B x 4, with ymin, xmin, ymax, xmax in normalized coords # ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1) # H, W is the original size of the image # mult_padding is relative to object size in pixels # i assume we're rendering an image the same size as the original (H, W) if not mult_padding==1.0: y, x = get_centroid_from_box2d(box2d) h, w = get_size_from_box2d(box2d) box2d = get_box2d_from_centroid_and_size( y, x, h*mult_padding, w*mult_padding, clip=False) if use_image_aspect_ratio: h, w = get_size_from_box2d(box2d) y, x = get_centroid_from_box2d(box2d) # note h,w are relative right now # we need to undo this, to see the real ratio h = h*float(H) w = w*float(W) box_ratio = h/w im_ratio = H/float(W) # print('box_ratio:', box_ratio) # print('im_ratio:', im_ratio) if box_ratio >= im_ratio: w = h/im_ratio # print('setting w:', h/im_ratio) else: h = w*im_ratio # print('setting h:', w*im_ratio) box2d = get_box2d_from_centroid_and_size( y, x, h/float(H), w/float(W), clip=False) assert(h > 1e-4) assert(w > 1e-4) ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1) fx, fy, x0, y0 = split_intrinsics(pix_T_cam) # the topleft of the new image will now have a different offset from the center of projection new_x0 = x0 - xmin*W new_y0 = y0 - ymin*H pix_T_cam = pack_intrinsics(fx, fy, new_x0, new_y0) # this alone will give me an image in original resolution, # with its topleft at the box corner box_h, box_w = get_size_from_box2d(box2d) # these are normalized, and shaped B. (e.g., [0.4], [0.3]) # we are going to scale the image by the inverse of this, # since we are zooming into this area sy = 1./box_h sx = 1./box_w pix_T_cam = scale_intrinsics(pix_T_cam, sx, sy) return pix_T_cam, box2d def pixels2camera(x,y,z,fx,fy,x0,y0): # x and y are locations in pixel coordinates, z is a depth in meters # they can be images or pointclouds # fx, fy, x0, y0 are camera intrinsics # returns xyz, sized B x N x 3 B = x.shape[0] fx = torch.reshape(fx, [B,1]) fy = torch.reshape(fy, [B,1]) x0 = torch.reshape(x0, [B,1]) y0 = torch.reshape(y0, [B,1]) x = torch.reshape(x, [B,-1]) y = torch.reshape(y, [B,-1]) z = torch.reshape(z, [B,-1]) # unproject x = (z/fx)*(x-x0) y = (z/fy)*(y-y0) xyz = torch.stack([x,y,z], dim=2) # B x N x 3 return xyz def camera2pixels(xyz, pix_T_cam): # xyz is shaped B x H*W x 3 # returns xy, shaped B x H*W x 2 fx, fy, x0, y0 = split_intrinsics(pix_T_cam) x, y, z = torch.unbind(xyz, dim=-1) B = list(z.shape)[0] fx = torch.reshape(fx, [B,1]) fy = torch.reshape(fy, [B,1]) x0 = torch.reshape(x0, [B,1]) y0 = torch.reshape(y0, [B,1]) x = torch.reshape(x, [B,-1]) y = torch.reshape(y, [B,-1]) z = torch.reshape(z, [B,-1]) EPS = 1e-4 z = torch.clamp(z, min=EPS) x = (x*fx)/z + x0 y = (y*fy)/z + y0 xy = torch.stack([x, y], dim=-1) return xy def depth2pointcloud(z, pix_T_cam): B, C, H, W = list(z.shape) device = z.device y, x = utils.basic.meshgrid2d(B, H, W, device=device) z = torch.reshape(z, [B, H, W]) fx, fy, x0, y0 = split_intrinsics(pix_T_cam) xyz = pixels2camera(x, y, z, fx, fy, x0, y0) return xyz