File size: 1,476 Bytes
0022789
 
 
 
 
9148f31
39ffbcb
0022789
b2cd494
 
 
 
 
 
 
ff46a0e
e771e55
9148f31
b2cd494
 
 
 
0022789
 
 
ff46a0e
 
82192ca
0022789
 
ff46a0e
82192ca
0022789
ff46a0e
0022789
 
67994b3
0022789
 
 
 
 
ff46a0e
0022789
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import spaces

# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)

# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))

# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")

# Restore original torch.load
torch.load = original_load

@spaces.GPU
def process_image(input_image):
    if input_image is None:
        return None

    # Convert to PIL Image for resizing
    pil_image = Image.fromarray(input_image)

    # Upscale the image using AuraSR
    with torch.no_grad():
        upscaled_image = aura_sr.upscale_4x(pil_image)

    # Convert result to numpy array if it's not already
    result_array = np.array(upscaled_image)

    return [input_image, result_array]

with gr.Blocks() as demo:
    gr.Markdown("# Image Upscaler using AuraSR")
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(label="Input Image", type="numpy")
            process_btn = gr.Button("Upscale Image")
        with gr.Column(scale=1):
            output_slider = ImageSlider(label="Before / After", type="numpy")

    process_btn.click(
        fn=process_image,
        inputs=[input_image],
        outputs=output_slider
    )

demo.launch(debug=True)