Last commit not found
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import cv2 | |
from tensorflow.python.keras.models import load_model | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix | |
class GradCAM(object): | |
def __init__(self, model, alpha=0.8, beta=0.3): | |
self.model = model | |
self.alpha = alpha | |
self.beta = beta | |
def apply_heatmap(self, heatmap, image): | |
heatmap = cv2.resize(heatmap, image.shape[:-1]) | |
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) | |
superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha, | |
np.array(heatmap).astype(np.float32), self.beta, 0) | |
return np.array(superimposed_img).astype(np.uint8) | |
def gradCAM(self, x_test=None, name='block5_conv3', index_class=0): | |
with tf.GradientTape() as tape: | |
last_conv_layer = self.model.get_layer(name) | |
grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output]) | |
model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0)) | |
class_out = model_out[:, index_class] | |
grads = tape.gradient(class_out, last_conv_layer) | |
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) | |
last_conv_layer = last_conv_layer[0] | |
heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis] | |
heatmap = tf.squeeze(heatmap) | |
heatmap = np.maximum(heatmap, 0) | |
heatmap /= np.max(heatmap) | |
heatmap = np.array(heatmap) | |
return self.apply_heatmap(heatmap, x_test) | |
# Streamlit app | |
st.title("Grad-CAM Visualization") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
try: | |
# Load the uploaded image | |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) | |
img = cv2.imdecode(file_bytes, 1) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
st.image(img, caption='Uploaded Image.', use_column_width=True) | |
# Preprocess the image for the model (assuming the model expects 224x224 images) | |
img_resized = cv2.resize(img, (224, 224)) | |
img_array = np.expand_dims(img_resized, axis=0) | |
# Load the model | |
model_path = 'model_renamed.h5' # Update this path to your model's path | |
model = tf.keras.models.load_model(model_path) | |
# Initialize GradCAM | |
grad_cam = GradCAM(model) | |
# Compute GradCAM heatmap | |
heatmap_img = grad_cam.gradCAM(img_array[0]) | |
# Display the GradCAM heatmap | |
st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True) | |
except Exception as e: | |
st.error(f"Error: {e}") |