Delete app-streamlit.py
Browse files- app-streamlit.py +0 -503
app-streamlit.py
DELETED
@@ -1,503 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import pydicom
|
5 |
-
import tensorflow as tf
|
6 |
-
import keras
|
7 |
-
from pydicom.dataset import Dataset, FileDataset
|
8 |
-
from pydicom.uid import generate_uid
|
9 |
-
from google.cloud import storage
|
10 |
-
import os
|
11 |
-
import io
|
12 |
-
from PIL import Image
|
13 |
-
import uuid
|
14 |
-
import pandas as pd
|
15 |
-
import tensorflow as tf
|
16 |
-
from datetime import datetime
|
17 |
-
import SimpleITK as sitk
|
18 |
-
from tensorflow import image
|
19 |
-
from tensorflow.python.keras.models import load_model
|
20 |
-
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
21 |
-
|
22 |
-
# Environment Configuration
|
23 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "./da-kalbe-63ee33c9cdbb.json"
|
24 |
-
bucket_name = "da-kalbe-ml-result-png"
|
25 |
-
storage_client = storage.Client()
|
26 |
-
bucket_result = storage_client.bucket(bucket_name)
|
27 |
-
bucket_name_load = "da-ml-models"
|
28 |
-
bucket_load = storage_client.bucket(bucket_name_load)
|
29 |
-
|
30 |
-
H = 224
|
31 |
-
W = 224
|
32 |
-
|
33 |
-
@st.cache_resource
|
34 |
-
def load_model():
|
35 |
-
model = tf.keras.models.load_model("model-detection.h5", compile=False)
|
36 |
-
model.compile(
|
37 |
-
loss={
|
38 |
-
"bbox": "mse",
|
39 |
-
"class": "sparse_categorical_crossentropy"
|
40 |
-
},
|
41 |
-
optimizer=tf.keras.optimizers.Adam(),
|
42 |
-
metrics={
|
43 |
-
"bbox": ['mse'],
|
44 |
-
"class": ['accuracy']
|
45 |
-
}
|
46 |
-
)
|
47 |
-
return model
|
48 |
-
|
49 |
-
def preprocess_image(image):
|
50 |
-
""" Preprocess the image to the required size and normalization. """
|
51 |
-
image = cv2.resize(image, (W, H))
|
52 |
-
image = (image - 127.5) / 127.5 # Normalize to [-1, +1]
|
53 |
-
image = np.expand_dims(image, axis=0).astype(np.float32)
|
54 |
-
return image
|
55 |
-
|
56 |
-
def predict(model, image):
|
57 |
-
""" Predict bounding box and label for the input image. """
|
58 |
-
pred_bbox, pred_class = model.predict(image)
|
59 |
-
pred_label_confidence = np.max(pred_class, axis=1)[0]
|
60 |
-
pred_label = np.argmax(pred_class, axis=1)[0]
|
61 |
-
return pred_bbox[0], pred_label, pred_label_confidence
|
62 |
-
|
63 |
-
def draw_bbox(image, bbox):
|
64 |
-
""" Draw bounding box on the image. """
|
65 |
-
h, w, _ = image.shape
|
66 |
-
x1, y1, x2, y2 = bbox
|
67 |
-
x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h)
|
68 |
-
image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
69 |
-
return image
|
70 |
-
|
71 |
-
st.title("Chest X-ray Disease Detection")
|
72 |
-
|
73 |
-
st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.")
|
74 |
-
|
75 |
-
model = load_model()
|
76 |
-
|
77 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
78 |
-
|
79 |
-
if uploaded_file is not None:
|
80 |
-
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
81 |
-
image = cv2.imdecode(file_bytes, 1)
|
82 |
-
|
83 |
-
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
84 |
-
|
85 |
-
if st.button('Detect'):
|
86 |
-
st.write("Processing...")
|
87 |
-
input_image = preprocess_image(image)
|
88 |
-
pred_bbox, pred_label, pred_label_confidence = predict(model, input_image)
|
89 |
-
|
90 |
-
label_mapping = {
|
91 |
-
0: 'Atelectasis',
|
92 |
-
1: 'Cardiomegaly',
|
93 |
-
2: 'Effusion',
|
94 |
-
3: 'Infiltrate',
|
95 |
-
4: 'Mass',
|
96 |
-
5: 'Nodule',
|
97 |
-
6: 'Pneumonia',
|
98 |
-
7: 'Pneumothorax'
|
99 |
-
}
|
100 |
-
|
101 |
-
if pred_label_confidence < 0.01:
|
102 |
-
st.write("May not detect a disease.")
|
103 |
-
else:
|
104 |
-
pred_label_name = label_mapping[pred_label]
|
105 |
-
st.write(f"Prediction Label: {pred_label_name}")
|
106 |
-
st.write(f"Prediction Bounding Box: {pred_bbox}")
|
107 |
-
st.write(f"Prediction Confidence: {pred_label_confidence:.2f}")
|
108 |
-
|
109 |
-
output_image = draw_bbox(image.copy(), pred_bbox)
|
110 |
-
st.image(output_image, caption='Detected Image.', use_column_width=True)
|
111 |
-
|
112 |
-
|
113 |
-
# Utility Functions
|
114 |
-
def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'):
|
115 |
-
"""Uploads an image to Google Cloud Storage."""
|
116 |
-
try:
|
117 |
-
blob = bucket_result.blob(filename)
|
118 |
-
blob.upload_from_file(image_data, content_type=content_type)
|
119 |
-
st.write("File ready to be seen in OHIF Viewer.")
|
120 |
-
except Exception as e:
|
121 |
-
st.error(f"An unexpected error occurred: {e}")
|
122 |
-
|
123 |
-
def load_dicom_from_gcs(file_name: str = "dicom_00000001_000.dcm"):
|
124 |
-
# Get the blob object
|
125 |
-
blob = bucket_load.blob(file_name)
|
126 |
-
|
127 |
-
# Download the file as a bytes object
|
128 |
-
dicom_bytes = blob.download_as_bytes()
|
129 |
-
|
130 |
-
# Wrap bytes object into BytesIO (file-like object)
|
131 |
-
dicom_stream = io.BytesIO(dicom_bytes)
|
132 |
-
|
133 |
-
# Load the DICOM file
|
134 |
-
ds = pydicom.dcmread(dicom_stream)
|
135 |
-
|
136 |
-
return ds
|
137 |
-
|
138 |
-
def png_to_dicom(image_path: str, image_name: str, dicom: str = None):
|
139 |
-
if dicom is None:
|
140 |
-
ds = load_dicom_from_gcs()
|
141 |
-
else:
|
142 |
-
ds = load_dicom_from_gcs(dicom)
|
143 |
-
|
144 |
-
jpg_image = Image.open(image_path) # Open the image using the path
|
145 |
-
print("Image Mode:", jpg_image.mode)
|
146 |
-
if jpg_image.mode == 'L':
|
147 |
-
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)
|
148 |
-
ds.Rows = jpg_image.height
|
149 |
-
ds.Columns = jpg_image.width
|
150 |
-
ds.PhotometricInterpretation = "MONOCHROME1"
|
151 |
-
ds.SamplesPerPixel = 1
|
152 |
-
ds.BitsStored = 8
|
153 |
-
ds.BitsAllocated = 8
|
154 |
-
ds.HighBit = 7
|
155 |
-
ds.PixelRepresentation = 0
|
156 |
-
ds.PixelData = np_image.tobytes()
|
157 |
-
ds.save_as(image_name)
|
158 |
-
|
159 |
-
elif jpg_image.mode == 'RGBA':
|
160 |
-
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3]
|
161 |
-
ds.Rows = jpg_image.height
|
162 |
-
ds.Columns = jpg_image.width
|
163 |
-
ds.PhotometricInterpretation = "RGB"
|
164 |
-
ds.SamplesPerPixel = 3
|
165 |
-
ds.BitsStored = 8
|
166 |
-
ds.BitsAllocated = 8
|
167 |
-
ds.HighBit = 7
|
168 |
-
ds.PixelRepresentation = 0
|
169 |
-
ds.PixelData = np_image.tobytes()
|
170 |
-
ds.save_as(image_name)
|
171 |
-
elif jpg_image.mode == 'RGB':
|
172 |
-
np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3] # Remove alpha if present
|
173 |
-
ds.Rows = jpg_image.height
|
174 |
-
ds.Columns = jpg_image.width
|
175 |
-
ds.PhotometricInterpretation = "RGB"
|
176 |
-
ds.SamplesPerPixel = 3
|
177 |
-
ds.BitsStored = 8
|
178 |
-
ds.BitsAllocated = 8
|
179 |
-
ds.HighBit = 7
|
180 |
-
ds.PixelRepresentation = 0
|
181 |
-
ds.PixelData = np_image.tobytes()
|
182 |
-
ds.save_as(image_name)
|
183 |
-
else:
|
184 |
-
raise ValueError("Unsupported image mode:", jpg_image.mode)
|
185 |
-
return ds
|
186 |
-
|
187 |
-
def save_dicom_to_bytes(dicom):
|
188 |
-
dicom_bytes = io.BytesIO()
|
189 |
-
dicom.save_as(dicom_bytes)
|
190 |
-
dicom_bytes.seek(0)
|
191 |
-
return dicom_bytes
|
192 |
-
|
193 |
-
def upload_folder_images(original_image_path, enhanced_image_path):
|
194 |
-
# Extract the base name of the uploaded image without the extension
|
195 |
-
folder_name = os.path.splitext(uploaded_file.name)[0]
|
196 |
-
# Create the folder in Cloud Storage
|
197 |
-
bucket_result.blob(folder_name + '/').upload_from_string('', content_type='application/x-www-form-urlencoded')
|
198 |
-
enhancement_name = enhancement_type.split('_')[-1]
|
199 |
-
# Convert images to DICOM
|
200 |
-
original_dicom = png_to_dicom(original_image_path, "original_image.dcm")
|
201 |
-
enhanced_dicom = png_to_dicom(enhanced_image_path, enhancement_name + ".dcm")
|
202 |
-
|
203 |
-
# Convert DICOM to byte stream for uploading
|
204 |
-
original_dicom_bytes = io.BytesIO()
|
205 |
-
enhanced_dicom_bytes = io.BytesIO()
|
206 |
-
original_dicom.save_as(original_dicom_bytes)
|
207 |
-
enhanced_dicom.save_as(enhanced_dicom_bytes)
|
208 |
-
original_dicom_bytes.seek(0)
|
209 |
-
enhanced_dicom_bytes.seek(0)
|
210 |
-
|
211 |
-
# Upload images to GCS
|
212 |
-
upload_to_gcs(original_dicom_bytes, folder_name + '/' + 'original_image.dcm', content_type='application/dicom')
|
213 |
-
upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom')
|
214 |
-
|
215 |
-
|
216 |
-
def get_mean_std_per_batch(image_path, df, H=320, W=320):
|
217 |
-
sample_data = []
|
218 |
-
for idx, img in enumerate(df.sample(100)["Image Index"].values):
|
219 |
-
# path = image_dir + img
|
220 |
-
sample_data.append(
|
221 |
-
np.array(keras.utils.load_img(image_path, target_size=(H, W))))
|
222 |
-
|
223 |
-
mean = np.mean(sample_data[0])
|
224 |
-
std = np.std(sample_data[0])
|
225 |
-
return mean, std
|
226 |
-
|
227 |
-
def load_image(img_path, preprocess=True, height=320, width=320):
|
228 |
-
mean, std = get_mean_std_per_batch(img_path, df, height, width)
|
229 |
-
x = keras.utils.load_img(img_path, target_size=(height, width))
|
230 |
-
x = keras.utils.img_to_array(x)
|
231 |
-
if preprocess:
|
232 |
-
x -= mean
|
233 |
-
x /= std
|
234 |
-
x = np.expand_dims(x, axis=0)
|
235 |
-
return x
|
236 |
-
|
237 |
-
def grad_cam(input_model, img_array, cls, layer_name):
|
238 |
-
grad_model = tf.keras.models.Model(
|
239 |
-
[input_model.inputs],
|
240 |
-
[input_model.get_layer(layer_name).output, input_model.output]
|
241 |
-
)
|
242 |
-
|
243 |
-
with tf.GradientTape() as tape:
|
244 |
-
conv_outputs, predictions = grad_model(img_array)
|
245 |
-
loss = predictions[:, cls]
|
246 |
-
|
247 |
-
output = conv_outputs[0]
|
248 |
-
grads = tape.gradient(loss, conv_outputs)[0]
|
249 |
-
gate_f = tf.cast(output > 0, 'float32')
|
250 |
-
gate_r = tf.cast(grads > 0, 'float32')
|
251 |
-
guided_grads = gate_f * gate_r * grads
|
252 |
-
|
253 |
-
weights = tf.reduce_mean(guided_grads, axis=(0, 1))
|
254 |
-
|
255 |
-
cam = np.dot(output, weights)
|
256 |
-
|
257 |
-
for index, w in enumerate(weights):
|
258 |
-
cam += w * output[:, :, index]
|
259 |
-
|
260 |
-
cam = cv2.resize(cam.numpy(), (320, 320), cv2.INTER_LINEAR)
|
261 |
-
cam = np.maximum(cam, 0)
|
262 |
-
cam = cam / cam.max()
|
263 |
-
|
264 |
-
return cam
|
265 |
-
|
266 |
-
|
267 |
-
# Compute Grad-CAM
|
268 |
-
def compute_gradcam(model, img_path, layer_name='bn'):
|
269 |
-
preprocessed_input = load_image(img_path)
|
270 |
-
predictions = model.predict(preprocessed_input)
|
271 |
-
|
272 |
-
original_image = load_image(img_path, preprocess=False)
|
273 |
-
|
274 |
-
# Assuming you have 14 classes as previously mentioned
|
275 |
-
labels = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass',
|
276 |
-
'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening',
|
277 |
-
'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation']
|
278 |
-
|
279 |
-
for i in range(len(labels)):
|
280 |
-
st.write(f"Generating gradcam for class {labels[i]}")
|
281 |
-
gradcam = grad_cam(model, preprocessed_input, i, layer_name)
|
282 |
-
gradcam = (gradcam * 255).astype(np.uint8)
|
283 |
-
gradcam = cv2.applyColorMap(gradcam, cv2.COLORMAP_JET)
|
284 |
-
gradcam = cv2.addWeighted(gradcam, 0.5, original_image.squeeze().astype(np.uint8), 0.5, 0)
|
285 |
-
st.image(gradcam, caption=f"{labels[i]}: p={predictions[0][i]:.3f}", use_column_width=True)
|
286 |
-
|
287 |
-
def calculate_mse(original_image, enhanced_image):
|
288 |
-
mse = np.mean((original_image - enhanced_image) ** 2)
|
289 |
-
return mse
|
290 |
-
|
291 |
-
def calculate_psnr(original_image, enhanced_image):
|
292 |
-
mse = calculate_mse(original_image, enhanced_image)
|
293 |
-
if mse == 0:
|
294 |
-
return float('inf')
|
295 |
-
max_pixel_value = 255.0
|
296 |
-
psnr = 20 * np.log10(max_pixel_value / np.sqrt(mse))
|
297 |
-
return psnr
|
298 |
-
|
299 |
-
def calculate_maxerr(original_image, enhanced_image):
|
300 |
-
maxerr = np.max((original_image - enhanced_image) ** 2)
|
301 |
-
return maxerr
|
302 |
-
|
303 |
-
def calculate_l2rat(original_image, enhanced_image):
|
304 |
-
l2norm_ratio = np.sum(original_image ** 2) / np.sum((original_image - enhanced_image) ** 2)
|
305 |
-
return l2norm_ratio
|
306 |
-
|
307 |
-
def process_image(original_image, enhancement_type, fix_monochrome=True):
|
308 |
-
if fix_monochrome and original_image.shape[-1] == 3:
|
309 |
-
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
|
310 |
-
|
311 |
-
image = original_image - np.min(original_image)
|
312 |
-
image = image / np.max(original_image)
|
313 |
-
image = (image * 255).astype(np.uint8)
|
314 |
-
|
315 |
-
enhanced_image = enhance_image(image, enhancement_type)
|
316 |
-
|
317 |
-
mse = calculate_mse(original_image, enhanced_image)
|
318 |
-
psnr = calculate_psnr(original_image, enhanced_image)
|
319 |
-
maxerr = calculate_maxerr(original_image, enhanced_image)
|
320 |
-
l2rat = calculate_l2rat(original_image, enhanced_image)
|
321 |
-
|
322 |
-
return enhanced_image, mse, psnr, maxerr, l2rat
|
323 |
-
|
324 |
-
def apply_clahe(image):
|
325 |
-
clahe = cv2.createCLAHE(clipLimit=40.0, tileGridSize=(8, 8))
|
326 |
-
return clahe.apply(image)
|
327 |
-
|
328 |
-
def invert(image):
|
329 |
-
return cv2.bitwise_not(image)
|
330 |
-
|
331 |
-
def hp_filter(image, kernel=None):
|
332 |
-
if kernel is None:
|
333 |
-
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
334 |
-
return cv2.filter2D(image, -1, kernel)
|
335 |
-
|
336 |
-
def unsharp_mask(image, radius=5, amount=2):
|
337 |
-
def usm(image, radius, amount):
|
338 |
-
blurred = cv2.GaussianBlur(image, (0, 0), radius)
|
339 |
-
sharpened = cv2.addWeighted(image, 1.0 + amount, blurred, -amount, 0)
|
340 |
-
return sharpened
|
341 |
-
return usm(image, radius, amount)
|
342 |
-
|
343 |
-
def hist_eq(image):
|
344 |
-
return cv2.equalizeHist(image)
|
345 |
-
|
346 |
-
def enhance_image(image, enhancement_type):
|
347 |
-
if enhancement_type == "Invert":
|
348 |
-
return invert(image)
|
349 |
-
elif enhancement_type == "High Pass Filter":
|
350 |
-
return hp_filter(image)
|
351 |
-
elif enhancement_type == "Unsharp Masking":
|
352 |
-
return unsharp_mask(image)
|
353 |
-
elif enhancement_type == "Histogram Equalization":
|
354 |
-
return hist_eq(image)
|
355 |
-
elif enhancement_type == "CLAHE":
|
356 |
-
return apply_clahe(image)
|
357 |
-
else:
|
358 |
-
raise ValueError(f"Unknown enhancement type: {enhancement_type}")
|
359 |
-
|
360 |
-
# Function to add a button to redirect to the URL
|
361 |
-
def redirect_button(url):
|
362 |
-
button = st.button('Go to OHIF Viewer')
|
363 |
-
if button:
|
364 |
-
st.markdown(f'<meta http-equiv="refresh" content="0;url={url}" />', unsafe_allow_html=True)
|
365 |
-
|
366 |
-
def load_model():
|
367 |
-
model = tf.keras.models.load_model('./model.h5')
|
368 |
-
return model
|
369 |
-
|
370 |
-
###########################################################################################
|
371 |
-
########################### Streamlit Interface ###########################################
|
372 |
-
###########################################################################################
|
373 |
-
|
374 |
-
|
375 |
-
st.sidebar.title("Configuration")
|
376 |
-
uploaded_file = st.sidebar.file_uploader("Upload Original Image", type=["png", "jpg", "jpeg", "dcm"])
|
377 |
-
enhancement_type = st.sidebar.selectbox(
|
378 |
-
"Enhancement Type",
|
379 |
-
["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"]
|
380 |
-
)
|
381 |
-
|
382 |
-
# File uploader for DICOM files
|
383 |
-
if uploaded_file is not None:
|
384 |
-
if hasattr(uploaded_file, 'name'):
|
385 |
-
file_extension = uploaded_file.name.split(".")[-1] # Get the file extension
|
386 |
-
if file_extension.lower() == "dcm":
|
387 |
-
# Process DICOM file
|
388 |
-
dicom_data = pydicom.dcmread(uploaded_file)
|
389 |
-
pixel_array = dicom_data.pixel_array
|
390 |
-
# Process the pixel_array further if needed
|
391 |
-
# Extract all metadata
|
392 |
-
metadata = {elem.keyword: elem.value for elem in dicom_data if elem.keyword}
|
393 |
-
metadata_dict = {str(key): str(value) for key, value in metadata.items()}
|
394 |
-
df = pd.DataFrame.from_dict(metadata_dict, orient='index', columns=['Value'])
|
395 |
-
|
396 |
-
# Display metadata in the left-most column
|
397 |
-
with st.expander("Lihat Metadata"):
|
398 |
-
st.write("Metadata:")
|
399 |
-
st.dataframe(df)
|
400 |
-
|
401 |
-
# Read the pixel data
|
402 |
-
pixel_array = dicom_data.pixel_array
|
403 |
-
img_array = pixel_array.astype(float)
|
404 |
-
img_array = (np.maximum(img_array, 0) / img_array.max()) * 255.0 # Normalize to 0-255
|
405 |
-
img_array = np.uint8(img_array) # Convert to uint8
|
406 |
-
img = Image.fromarray(img_array)
|
407 |
-
|
408 |
-
col1, col2 = st.columns(2)
|
409 |
-
# Check the number of dimensions of the image
|
410 |
-
if img_array.ndim == 3:
|
411 |
-
n_slices = img_array.shape[0]
|
412 |
-
if n_slices > 1:
|
413 |
-
slice_ix = st.sidebar.slider('Slice', 0, n_slices - 1, int(n_slices / 2))
|
414 |
-
# Display the selected slice
|
415 |
-
st.image(img_array[slice_ix, :, :], caption=f"Slice {slice_ix}", use_column_width=True)
|
416 |
-
else:
|
417 |
-
# If there's only one slice, just display it
|
418 |
-
st.image(img_array[0, :, :], caption="Single Slice Image", use_column_width=True)
|
419 |
-
elif img_array.ndim == 2:
|
420 |
-
# If the image is 2D, just display it
|
421 |
-
with col1:
|
422 |
-
st.image(img_array, caption="Original Image", use_column_width=True)
|
423 |
-
else:
|
424 |
-
st.error("Unsupported image dimensions")
|
425 |
-
|
426 |
-
original_image = img_array
|
427 |
-
|
428 |
-
# Example: convert to grayscale if it's a color image
|
429 |
-
if len(pixel_array.shape) > 2:
|
430 |
-
pixel_array = pixel_array[:, :, 0] # Take only the first channel
|
431 |
-
# Perform image enhancement and evaluation on pixel_array
|
432 |
-
enhanced_image, mse, psnr, maxerr, l2rat = process_image(pixel_array, enhancement_type)
|
433 |
-
else:
|
434 |
-
# Process regular image file
|
435 |
-
original_image = np.array(keras.utils.load_img(uploaded_file, color_mode='rgb' if enhancement_type == "Invert" else 'grayscale'))
|
436 |
-
# Perform image enhancement and evaluation on original_image
|
437 |
-
enhanced_image, mse, psnr, maxerr, l2rat = process_image(original_image, enhancement_type)
|
438 |
-
col1, col2 = st.columns(2)
|
439 |
-
with col1:
|
440 |
-
st.image(original_image, caption="Original Image", use_column_width=True)
|
441 |
-
with col2:
|
442 |
-
st.image(enhanced_image, caption='Enhanced Image', use_column_width=True)
|
443 |
-
|
444 |
-
col1, col2 = st.columns(2)
|
445 |
-
col3, col4 = st.columns(2)
|
446 |
-
|
447 |
-
col1.metric("MSE", round(mse,3))
|
448 |
-
col2.metric("PSNR", round(psnr,3))
|
449 |
-
col3.metric("Maxerr", round(maxerr,3))
|
450 |
-
col4.metric("L2Rat", round(l2rat,3))
|
451 |
-
|
452 |
-
# Save enhanced image to a file
|
453 |
-
enhanced_image_path = "enhanced_image.png"
|
454 |
-
cv2.imwrite(enhanced_image_path, enhanced_image)
|
455 |
-
|
456 |
-
|
457 |
-
# Save enhanced image to a file
|
458 |
-
enhanced_image_path = "enhanced_image.png"
|
459 |
-
cv2.imwrite(enhanced_image_path, enhanced_image)
|
460 |
-
|
461 |
-
# Save original image to a file
|
462 |
-
original_image_path = "original_image.png"
|
463 |
-
cv2.imwrite(original_image_path, original_image)
|
464 |
-
|
465 |
-
# Add the redirect button
|
466 |
-
col1, col2, col3 = st.columns(3)
|
467 |
-
with col1:
|
468 |
-
redirect_button("https://new-ohif-viewer-k7c3gdlxua-et.a.run.app/")
|
469 |
-
|
470 |
-
with col2:
|
471 |
-
if st.button('Auto Detect'):
|
472 |
-
name = uploaded_file.name.split("/")[-1].split(".")[0]
|
473 |
-
true_bbox_row = df[df['Image Index'] == uploaded_file.name]
|
474 |
-
|
475 |
-
if not true_bbox_row.empty:
|
476 |
-
x1, y1 = int(true_bbox_row['Bbox [x']), int(true_bbox_row['y'])
|
477 |
-
x2, y2 = int(true_bbox_row['x_max']), int(true_bbox_row['y_max'])
|
478 |
-
true_bbox = [x1, y1, x2, y2]
|
479 |
-
label = true_bbox_row['Finding Label'].values[0]
|
480 |
-
|
481 |
-
pred_bbox = predict(image)
|
482 |
-
iou = cal_iou(true_bbox, pred_bbox)
|
483 |
-
|
484 |
-
image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 5) # BLUE
|
485 |
-
image = cv2.rectangle(image, (pred_bbox[0], pred_bbox[1]), (pred_bbox[2], pred_bbox[3]), (0, 0, 255), 5) # RED
|
486 |
-
|
487 |
-
x_pos = int(image.shape[1] * 0.05)
|
488 |
-
y_pos = int(image.shape[0] * 0.05)
|
489 |
-
font_size = 0.7
|
490 |
-
|
491 |
-
cv2.putText(image, f"IoU: {iou:.4f}", (x_pos, y_pos), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 0, 0), 2)
|
492 |
-
cv2.putText(image, f"Label: {label}", (x_pos, y_pos + 30), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 255, 255), 2)
|
493 |
-
|
494 |
-
st.image(image, channels="BGR")
|
495 |
-
else:
|
496 |
-
st.write("No bounding box and label found for this image.")
|
497 |
-
|
498 |
-
with col3:
|
499 |
-
if st.button('Generate Grad-CAM'):
|
500 |
-
model = load_model()
|
501 |
-
# Compute and show Grad-CAM
|
502 |
-
st.write("Generating Grad-CAM visualizations")
|
503 |
-
compute_gradcam(model, uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|